logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000013_01473

You are here: Home > Sequence: MGYG000000013_01473

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bacteroides sp902362375
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides; Bacteroides sp902362375
CAZyme ID MGYG000000013_01473
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
730 82670.92 6.4164
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000013 6368149 Isolate United Kingdom Europe
Gene Location Start: 534012;  End: 536204  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000013_01473.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 187 350 1e-19 0.94375

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03822 GT4_mannosyltransferase-like 6.79e-76 3 375 1 370
mannosyltransferases of glycosyltransferase family 4 and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. ORF704 in E. coli has been shown to be involved in the biosynthesis of O-specific mannose homopolysaccharides.
cd03801 GT4_PimA-like 3.86e-36 5 375 4 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 1.83e-26 1 376 1 376
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03807 GT4_WbnK-like 1.57e-21 127 361 117 347
Shigella dysenteriae WbnK and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. WbnK in Shigella dysenteriae has been shown to be involved in the type 7 O-antigen biosynthesis.
cd03819 GT4_WavL-like 4.00e-21 110 347 101 325
Vibrio cholerae WavL and similar sequences. This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
SCD21652.1 0.0 1 727 1 727
BCS86341.1 8.55e-301 1 730 1 730
AWA31516.1 4.62e-280 3 725 20 742
AWI27321.1 9.28e-280 3 725 20 742
QKJ63642.1 8.60e-278 3 727 40 767

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3C4Q_A 9.41e-06 140 374 168 402
Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]
3C48_A 9.61e-06 140 374 188 422
Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum]

Swiss-Prot Hits      help

has no Swissprot hit.

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000057 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000013_01473.