logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000033_01480

You are here: Home > Sequence: MGYG000000033_01480

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-41 sp900066215
Lineage Bacteria; Firmicutes_A; Clostridia; Monoglobales_A; UBA1381; CAG-41; CAG-41 sp900066215
CAZyme ID MGYG000000033_01480
CAZy Family GH13
CAZyme Description Trehalose synthase/amylase TreS
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
301 MGYG000000033_10|CGC1 35038.51 5.0713
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000033 3010191 Isolate United Kingdom Europe
Gene Location Start: 20402;  End: 21307  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000033_01480.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 29 256 2e-51 0.678343949044586

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11348 AmyAc_2 1.34e-150 11 297 1 286
Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The catalytic triad (DED) is not present here. The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11328 AmyAc_maltase 7.72e-70 3 220 1 213
Alpha amylase catalytic domain found in maltase (also known as alpha glucosidase) and related proteins. Maltase (EC 3.2.1.20) hydrolyzes the terminal, non-reducing (1->4)-linked alpha-D-glucose residues in maltose, releasing alpha-D-glucose. In most cases, maltase is equivalent to alpha-glucosidase, but the term "maltase" emphasizes the disaccharide nature of the substrate from which glucose is cleaved, and the term "alpha-glucosidase" emphasizes the bond, whether the substrate is a disaccharide or polysaccharide. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11334 AmyAc_TreS 1.48e-69 6 247 1 238
Alpha amylase catalytic domain found in Trehalose synthetase. Trehalose synthetase (TreS) catalyzes the reversible interconversion of trehalose and maltose. The enzyme catalyzes the reaction in both directions, but the preferred substrate is maltose. Glucose is formed as a by-product of this reaction. It is believed that the catalytic mechanism may involve the cutting of the incoming disaccharide and transfer of a glucose to an enzyme-bound glucose. This enzyme also catalyzes production of a glucosamine disaccharide from maltose and glucosamine. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11333 AmyAc_SI_OligoGlu_DGase 1.96e-68 9 259 2 261
Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), dextran glucosidase (also called glucan 1,6-alpha-glucosidase), and related proteins. The sucrose isomerases (SIs) Isomaltulose synthase (EC 5.4.99.11) and Trehalose synthase (EC 5.4.99.16) catalyze the isomerization of sucrose and maltose to produce isomaltulose and trehalulose, respectively. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Dextran glucosidase (DGase, EC 3.2.1.70) hydrolyzes alpha-1,6-glucosidic linkages at the non-reducing end of panose, isomaltooligosaccharides and dextran to produce alpha-glucose.The common reaction chemistry of the alpha-amylase family enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. Both enzymes contain the three catalytic residues (Asp, Glu and Asp) common to the alpha-amylase family as well as two histidine residues which are predicted to be critical to binding the glucose residue adjacent to the scissile bond in the substrates. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11316 AmyAc_bac2_AmyA 6.66e-68 10 254 1 233
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AOZ95703.1 3.48e-105 4 277 2 276
ADL33472.1 1.28e-103 4 280 2 279
QHI68786.1 1.36e-102 4 297 5 297
AFD05258.1 3.07e-102 4 276 26 298
AFD07826.1 3.07e-102 3 280 25 303

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3ZO9_A 6.85e-49 5 247 34 272
ChainA, Trehalose Synthase/amylase Tres [Mycolicibacterium smegmatis],3ZO9_B Chain B, Trehalose Synthase/amylase Tres [Mycolicibacterium smegmatis],3ZOA_A Chain A, Trehalose Synthase/amylase Tres [Mycolicibacterium smegmatis],3ZOA_B Chain B, Trehalose Synthase/amylase Tres [Mycolicibacterium smegmatis],5JY7_A Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_B Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_C Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_D Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_E Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_F Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_G Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155],5JY7_H Complex of Mycobacterium smegmatis trehalose synthase with maltokinase [Mycolicibacterium smegmatis MC2 155]
3WY4_A 4.43e-46 6 209 7 202
Crystalstructure of alpha-glucosidase mutant E271Q in complex with maltose [Halomonas sp. H11],3WY4_B Crystal structure of alpha-glucosidase mutant E271Q in complex with maltose [Halomonas sp. H11]
3WY1_A 4.43e-46 6 209 7 202
Crystalstructure of alpha-glucosidase [Halomonas sp. H11],3WY1_B Crystal structure of alpha-glucosidase [Halomonas sp. H11],3WY2_A Crystal structure of alpha-glucosidase in complex with glucose [Halomonas sp. H11],3WY2_B Crystal structure of alpha-glucosidase in complex with glucose [Halomonas sp. H11]
3GBD_A 1.58e-45 4 216 3 206
Crystalstructure of the isomaltulose synthase SmuA from Protaminobacter rubrum [Serratia plymuthica],3GBE_A Crystal structure of the isomaltulose synthase SmuA from Protaminobacter rubrum in complex with the inhibitor deoxynojirimycin [Serratia plymuthica]
3WY3_A 2.30e-45 6 209 7 202
Crystalstructure of alpha-glucosidase mutant D202N in complex with glucose and glycerol [Halomonas sp. H11],3WY3_B Crystal structure of alpha-glucosidase mutant D202N in complex with glucose and glycerol [Halomonas sp. H11]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
A0R6E0 3.75e-48 5 247 34 272
Trehalose synthase/amylase TreS OS=Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) OX=246196 GN=treS PE=1 SV=1
Q45101 8.23e-47 5 216 3 206
Oligo-1,6-glucosidase OS=Weizmannia coagulans OX=1398 GN=malL PE=3 SV=1
O06994 2.41e-44 5 216 3 206
Oligo-1,6-glucosidase 1 OS=Bacillus subtilis (strain 168) OX=224308 GN=malL PE=1 SV=1
P29094 3.40e-44 6 216 5 206
Oligo-1,6-glucosidase OS=Parageobacillus thermoglucosidasius OX=1426 GN=malL PE=1 SV=1
O16098 4.00e-44 5 218 81 289
Maltase 1 OS=Drosophila virilis OX=7244 GN=Mal-B1 PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000045 0.000003 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000033_01480.