logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000216_00612

You are here: Home > Sequence: MGYG000000216_00612

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Blautia_A sp003474435
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Blautia_A; Blautia_A sp003474435
CAZyme ID MGYG000000216_00612
CAZy Family CBM34
CAZyme Description Neopullulanase 1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
540 MGYG000000216_4|CGC2 63019.45 5.0202
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000216 3676052 Isolate China Asia
Gene Location Start: 136974;  End: 138596  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.1 3.2.1.41

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 192 524 6.2e-79 0.8639240506329114
CBM34 38 130 2.1e-21 0.875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11338 AmyAc_CMD 5.63e-133 139 524 1 320
Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
PRK10785 PRK10785 7.33e-99 37 515 11 453
maltodextrin glucosidase; Provisional
pfam00128 Alpha-amylase 7.54e-47 192 524 1 304
Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain.
COG0366 AmyA 1.71e-46 140 533 1 339
Glycosidase [Carbohydrate transport and metabolism].
cd11316 AmyAc_bac2_AmyA 1.26e-36 140 430 1 225
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CBL21300.1 0.0 1 537 1 537
QCU02839.1 0.0 1 537 1 537
AWY98996.1 1.26e-272 7 537 8 538
QMW79818.1 4.55e-267 3 537 3 538
QIB57400.1 4.55e-267 3 537 3 538

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5Z0T_A 3.64e-86 25 517 10 480
Thermoactinomycesvulgaris R-47 alpha-amylase I (TVA I) mutant A357V/Q359N/Y360E (AQY/VNE) [Thermoactinomyces vulgaris],5Z0T_B Thermoactinomyces vulgaris R-47 alpha-amylase I (TVA I) mutant A357V/Q359N/Y360E (AQY/VNE) [Thermoactinomyces vulgaris]
1JI1_A 5.42e-85 25 517 10 480
CrystalStructure Analysis of Thermoactinomyces vulgaris R-47 alpha-Amylase 1 [Thermoactinomyces vulgaris],1JI1_B Crystal Structure Analysis of Thermoactinomyces vulgaris R-47 alpha-Amylase 1 [Thermoactinomyces vulgaris],1UH3_A Thermoactinomyces vulgaris R-47 alpha-amylase/acarbose complex [Thermoactinomyces vulgaris]
1IZJ_A 7.59e-85 25 517 10 480
ChainA, amylase [Thermoactinomyces vulgaris]
1IZK_A 1.49e-84 25 517 10 480
ChainA, amylase [Thermoactinomyces vulgaris]
5Z0U_A 1.62e-84 25 517 10 469
Thermoactinomycesvulgaris R-47 alpha-amylase I (TVA I) 11 residues (from A363 to N373) deletion mutant (Del11) [Thermoactinomyces vulgaris]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q60053 5.72e-84 25 517 39 509
Neopullulanase 1 OS=Thermoactinomyces vulgaris OX=2026 GN=tvaI PE=1 SV=1
P38939 7.25e-64 34 515 261 740
Amylopullulanase OS=Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) OX=340099 GN=apu PE=1 SV=2
P29964 6.70e-62 24 524 3 436
Cyclomaltodextrinase OS=Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) OX=340099 GN=Teth39_0676 PE=1 SV=2
Q08341 1.81e-61 46 524 23 438
Cyclomaltodextrinase OS=Lysinibacillus sphaericus OX=1421 PE=1 SV=1
Q9R9H8 1.24e-60 35 516 11 430
Intracellular maltogenic amylase OS=Bacillus subtilis OX=1423 GN=bbmA PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.999762 0.000275 0.000024 0.000001 0.000000 0.000001

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000216_00612.