logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000404_00129

You are here: Home > Sequence: MGYG000000404_00129

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UBA11774 sp003507655
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; UBA11774; UBA11774 sp003507655
CAZyme ID MGYG000000404_00129
CAZy Family GT4
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
431 MGYG000000404_1|CGC1 49322.41 4.84
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000404 2228546 MAG Sweden Europe
Gene Location Start: 142413;  End: 143708  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000404_00129.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 226 345 1.3e-16 0.7375

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 1.47e-20 159 417 132 364
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd01635 Glycosyltransferase_GTB-type 1.76e-18 109 335 2 225
glycosyltransferase family 1 and related proteins with GTB topology. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. The structures of the formed glycoconjugates are extremely diverse, reflecting a wide range of biological functions. The members of this family share a common GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility.
COG0438 RfaB 1.65e-17 105 420 88 380
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03817 GT4_UGDG-like 7.77e-13 168 394 148 353
UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol.
cd03798 GT4_WlbH-like 2.70e-12 188 382 173 342
Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ACR71127.1 3.84e-142 1 405 1 414
QWT52109.1 1.85e-105 42 397 12 370
BBI36185.1 2.87e-102 15 406 17 413
QQZ62154.1 3.86e-102 9 406 14 411
ANY70499.1 1.39e-96 9 399 16 406

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      help

has no Swissprot hit.

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000055 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000404_00129.