Species | Bruticola sp004554425 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Eremiobacterota; Xenobia; Xenobiales; Xenobiaceae; Bruticola; Bruticola sp004554425 | |||||||||||
CAZyme ID | MGYG000000541_00443 | |||||||||||
CAZy Family | GH57 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 2851; End: 4854 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH57 | 16 | 426 | 1.2e-54 | 0.783289817232376 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd10792 | GH57N_AmyC_like | 6.62e-118 | 13 | 424 | 1 | 412 | N-terminal catalytic domain of alpha-amylase ( AmyC ) and similar proteins. Alpha-amylases (alpha-1,4-glucan-4-glucanohydrolases, EC 3.2.1.1) play essential roles in alpha-glucan metabolism by catalyzing the hydrolysis of polysaccharides such as amylose starch, and beta-limit dextrin. This subfamily is represented by a novel alpha-amylase (AmyC) encoded by hyperthermophilic organism Thermotoga maritime ORF tm1438, and its prokaryotic homologs. AmyC functions as a homotetramer and shows thermostable amylolytic activity. It is strongly inhibited by acarbose. AmyC is composed of a N-terminal catalytic domain, containing a distorted TIM-barrel structure with a characteristic (beta/alpha)7 fold motif, and two additional less conserved domains. There are other two canonical alpha-amylases encoded from T. maritime that lack the sequence similarity to AmyC, and belong to a different superfamily. |
COG1543 | COG1543 | 3.08e-97 | 13 | 532 | 3 | 501 | Predicted glycosyl hydrolase, contains GH57 and DUF1957 domains [Carbohydrate transport and metabolism]. |
cd10816 | GH57N_BE_TK1436_like | 5.98e-61 | 13 | 424 | 1 | 423 | N-terminal catalytic domain of Gh57 branching enzyme TK 1436 and similar proteins. The subfamily is represented by a novel branching-enzyme TK1436 of hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Branching enzymes (BEs, EC 2.4.1.18) play a key role in synthesis of alpha-glucans and they generally are classified into glycoside hydrolase family 13 (GH13). However, TK1436 belongs to the GH57 family. It functions as a monomer and possesses BE activity. TK1436 is composed of a distorted N-terminal (beta/alpha)7-barrel domain and a C-terminal five alpha-helical domain, both of which participate in the formation of the active-site cleft. |
cd01022 | GH57N_like | 5.01e-38 | 16 | 424 | 1 | 313 | N-terminal catalytic domain of heat stable retaining glycoside hydrolase family 57. Glycoside hydrolase family 57(GH57) is a chiefly prokaryotic family with the majority of thermostable enzymes coming from extremophiles (many of these are archaeal hyperthermophiles), which exhibit the enzyme specificities of alpha-amylase (EC 3.2.1.1), 4-alpha-glucanotransferase (EC 2.4.1.25), amylopullulanase (EC 3.2.1.1/41), and alpha-galactosidase (EC 3.2.1.22). This family also includes many hypothetical proteins with uncharacterized activity and specificity. GH57s cleave alpha-glycosidic bonds by employing a retaining mechanism, which involves a glycosyl-enzyme intermediate, allowing transglycosylation. |
pfam03065 | Glyco_hydro_57 | 5.10e-25 | 16 | 220 | 1 | 171 | Glycosyl hydrolase family 57. This family includes alpha-amylase (EC:3.2.1.1), 4--glucanotransferase (EC:2.4.1.-) and amylopullulanase enzymes. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QSB00459.1 | 3.01e-105 | 11 | 532 | 2 | 527 |
QBC28858.1 | 8.38e-105 | 11 | 532 | 2 | 527 |
AMK75994.1 | 1.66e-104 | 11 | 532 | 2 | 527 |
AEG01911.1 | 3.38e-104 | 11 | 532 | 2 | 528 |
QWF72341.1 | 1.32e-103 | 11 | 534 | 2 | 529 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
2B5D_X | 4.31e-81 | 13 | 530 | 3 | 521 | Crystalstructure of the novel alpha-amylase AmyC from Thermotoga maritima [Thermotoga maritima MSB8] |
3N8T_A | 1.15e-51 | 13 | 520 | 3 | 519 | ChainA, alpha-amylase, GH57 family [Thermococcus kodakarensis],3N92_A Chain A, alpha-amylase, GH57 family [Thermococcus kodakarensis],3N98_A Chain A, alpha-amylase, GH57 family [Thermococcus kodakarensis] |
3P0B_A | 2.77e-47 | 2 | 526 | 11 | 529 | Thermusthermophilus family GH57 branching enzyme: crystal structure, mechanism of action and products formed [Thermus thermophilus] |
5WU7_A | 1.53e-46 | 13 | 500 | 3 | 496 | Crystalstructure of GH57-type branching enzyme from hyperthermophilic archaeon Pyrococcus horikoshii [Pyrococcus horikoshii OT3],5WU7_B Crystal structure of GH57-type branching enzyme from hyperthermophilic archaeon Pyrococcus horikoshii [Pyrococcus horikoshii OT3] |
1UFA_A | 7.03e-44 | 16 | 526 | 5 | 509 | Crystalstructure of TT1467 from Thermus thermophilus HB8 [Thermus thermophilus] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q5JDJ7 | 3.46e-50 | 13 | 520 | 3 | 519 | 1,4-alpha-glucan branching enzyme TK1436 OS=Thermococcus kodakarensis (strain ATCC BAA-918 / JCM 12380 / KOD1) OX=69014 GN=TK1436 PE=1 SV=1 |
Q5SH28 | 3.47e-45 | 16 | 526 | 5 | 509 | 1,4-alpha-glucan branching enzyme TTHA1902 OS=Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8) OX=300852 GN=TTHA1902 PE=1 SV=1 |
P9WQ26 | 1.87e-20 | 13 | 510 | 10 | 500 | Probable 1,4-alpha-glucan branching enzyme MT3115 OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT3115 PE=3 SV=1 |
P9WQ27 | 1.87e-20 | 13 | 510 | 10 | 500 | Probable 1,4-alpha-glucan branching enzyme Rv3031 OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv3031 PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000067 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.