logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000937_02035

You are here: Home > Sequence: MGYG000000937_02035

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UMGS403 sp900541975
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Acutalibacteraceae; UMGS403; UMGS403 sp900541975
CAZyme ID MGYG000000937_02035
CAZy Family GH13
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
557 MGYG000000937_28|CGC1 62396.15 4.1408
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000937 2265948 MAG Germany Europe
Gene Location Start: 14617;  End: 16290  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.1 3.2.1.98

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 2 393 1.6e-113 0.8812351543942993

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11339 AmyAc_bac_CMD_like_2 2.37e-61 158 456 126 344
Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11320 AmyAc_AmyMalt_CGTase_like 3.14e-14 8 387 104 348
Alpha amylase catalytic domain found in maltogenic amylases, cyclodextrin glycosyltransferase, and related proteins. Enzymes such as amylases, cyclomaltodextrinase (CDase), and cyclodextrin glycosyltransferase (CGTase) degrade starch to smaller oligosaccharides by hydrolyzing the alpha-D-(1,4) linkages between glucose residues. In the case of CGTases, an additional cyclization reaction is catalyzed yielding mixtures of cyclic oligosaccharides which are referred to as alpha-, beta-, or gamma-cyclodextrins (CDs), consisting of six, seven, or eight glucose residues, respectively. CGTases are characterized depending on the major product of the cyclization reaction. Besides having similar catalytic site residues, amylases and CGTases contain carbohydrate binding domains that are distant from the active site and are implicated in attaching the enzyme to raw starch granules and in guiding the amylose chain into the active site. The maltogenic alpha-amylase from Bacillus is a five-domain structure, unlike most alpha-amylases, but similar to that of cyclodextrin glycosyltransferase. In addition to the A, B, and C domains, they have a domain D and a starch-binding domain E. Maltogenic amylase is an endo-acting amylase that has activity on cyclodextrins, terminally modified linear maltodextrins, and amylose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
pfam00128 Alpha-amylase 7.04e-13 8 388 52 326
Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain.
COG0366 AmyA 8.18e-13 11 496 80 489
Glycosidase [Carbohydrate transport and metabolism].
cd11315 AmyAc_bac1_AmyA 9.10e-13 105 226 91 215
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Firmicutes, Proteobacteria, Actinobacteria, and Cyanobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QCT07168.1 2.50e-245 2 557 233 795
AWV35903.1 1.98e-184 2 557 676 1183
AIQ71010.1 2.34e-184 2 557 669 1176
AIQ52956.1 4.03e-184 2 557 677 1184
AIQ37967.1 1.27e-183 2 557 682 1189

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1CYG_A 1.10e-08 155 550 192 501
CyclodextrinGlucanotransferase (E.C.2.4.1.19) (Cgtase) [Geobacillus stearothermophilus]
1I75_A 1.01e-07 111 541 157 486
CRYSTALSTRUCTURE OF CYCLODEXTRIN GLUCANOTRANSFERASE FROM ALKALOPHILIC BACILLUS SP.#1011 COMPLEXED WITH 1-DEOXYNOJIRIMYCIN [Bacillus sp. (in: Bacteria)],1I75_B CRYSTAL STRUCTURE OF CYCLODEXTRIN GLUCANOTRANSFERASE FROM ALKALOPHILIC BACILLUS SP.#1011 COMPLEXED WITH 1-DEOXYNOJIRIMYCIN [Bacillus sp. (in: Bacteria)],1PAM_A CYCLODEXTRIN GLUCANOTRANSFERASE [Bacillus sp. 1011],1PAM_B CYCLODEXTRIN GLUCANOTRANSFERASE [Bacillus sp. 1011],1UKQ_A Crystal structure of cyclodextrin glucanotransferase complexed with a pseudo-maltotetraose derived from acarbose [Bacillus sp. 1011],1UKQ_B Crystal structure of cyclodextrin glucanotransferase complexed with a pseudo-maltotetraose derived from acarbose [Bacillus sp. 1011]
1UKT_A 1.01e-07 111 541 157 486
ChainA, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1UKT_B Chain B, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011]
1UKS_A 1.75e-07 111 541 157 486
ChainA, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1UKS_B Chain B, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011]
1V3K_A 2.31e-07 111 541 157 486
ChainA, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1V3K_B Chain B, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1V3M_A Chain A, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1V3M_B Chain B, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P08704 3.69e-09 131 519 198 532
Cyclomaltodextrin glucanotransferase OS=Klebsiella oxytoca OX=571 GN=cgt PE=3 SV=1
P31797 6.15e-08 155 550 223 532
Cyclomaltodextrin glucanotransferase OS=Geobacillus stearothermophilus OX=1422 GN=cgt PE=1 SV=1
P09121 5.61e-07 111 541 184 513
Cyclomaltodextrin glucanotransferase OS=Bacillus sp. (strain 38-2) OX=1412 GN=cgt PE=1 SV=2
P14014 6.75e-06 155 540 230 518
Cyclomaltodextrin glucanotransferase OS=Bacillus licheniformis OX=1402 GN=cgtA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000052 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000937_02035.