logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000953_00559

You are here: Home > Sequence: MGYG000000953_00559

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Fusobacterium_A sp900549465
Lineage Bacteria; Fusobacteriota; Fusobacteriia; Fusobacteriales; Fusobacteriaceae; Fusobacterium_A; Fusobacterium_A sp900549465
CAZyme ID MGYG000000953_00559
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
254 29652.87 9.4641
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000953 1995240 MAG Spain Europe
Gene Location Start: 1308;  End: 2072  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000953_00559.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 4 134 1.2e-24 0.8470588235294118

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd02511 Beta4Glucosyltransferase 9.03e-93 2 228 1 229
UDP-glucose LOS-beta-1,4 glucosyltransferase is required for biosynthesis of lipooligosaccharide. UDP-glucose: lipooligosaccharide (LOS) beta-1-4-glucosyltransferase catalyzes the addition of the first residue, glucose, of the lacto-N-neotetrase structure to HepI of the LOS inner core. LOS is the major constituent of the outer leaflet of the outer membrane of gram-positive bacteria. It consists of a short oligosaccharide chain of variable composition (alpha chain) attached to a branched inner core which is lined in turn to lipid A. Beta 1,4 glucosyltransferase is required to attach the alpha chain to the inner core.
COG0463 WcaA 2.48e-23 1 254 3 266
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
pfam00535 Glycos_transf_2 3.05e-23 4 149 1 156
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd00761 Glyco_tranf_GTA_type 3.45e-18 11 106 7 112
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
cd04179 DPM_DPG-synthase_like 1.70e-15 9 95 5 106
DPM_DPG-synthase_like is a member of the Glycosyltransferase 2 superfamily. DPM1 is the catalytic subunit of eukaryotic dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. In higher eukaryotes,the enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. In lower eukaryotes, such as Saccharomyces cerevisiae and Trypanosoma brucei, DPM synthase consists of a single component (Dpm1p and TbDpm1, respectively) that possesses one predicted transmembrane region near the C terminus for anchoring to the ER membrane. In contrast, the Dpm1 homologues of higher eukaryotes, namely fission yeast, fungi, and animals, have no transmembrane region, suggesting the existence of adapter molecules for membrane anchoring. This family also includes bacteria and archaea DPM1_like enzymes. However, the enzyme structure and mechanism of function are not well understood. The UDP-glucose:dolichyl-phosphate glucosyltransferase (DPG_synthase) is a transmembrane-bound enzyme of the endoplasmic reticulum involved in protein N-linked glycosylation. This enzyme catalyzes the transfer of glucose from UDP-glucose to dolichyl phosphate. This protein family belongs to Glycosyltransferase 2 superfamily.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AVQ18176.1 1.09e-174 1 254 1 254
QNM14759.1 1.09e-142 1 254 1 254
BBA49815.1 2.06e-122 1 254 1 254
AVQ30471.1 1.69e-121 1 251 1 251
VEH40948.1 1.69e-121 1 251 1 251

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7MSP_A 7.51e-09 3 96 56 152
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSP_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]
7MSN_A 8.96e-09 3 96 56 152
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSN_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]
7MSK_A 4.15e-07 3 82 68 150
ChainA, Glyco_trans_2-like domain-containing protein [Bacillus thuringiensis serovar andalousiensis BGSC 4AW1],7MSK_B Chain B, Glyco_trans_2-like domain-containing protein [Bacillus thuringiensis serovar andalousiensis BGSC 4AW1]
5TZE_C 1.64e-06 1 91 1 102
Crystalstructure of S. aureus TarS in complex with UDP-GlcNAc [Staphylococcus aureus],5TZE_E Crystal structure of S. aureus TarS in complex with UDP-GlcNAc [Staphylococcus aureus],5TZI_C Crystal structure of S. aureus TarS 1-349 [Staphylococcus aureus],5TZJ_A Crystal structure of S. aureus TarS 1-349 in complex with UDP-GlcNAc [Staphylococcus aureus],5TZJ_C Crystal structure of S. aureus TarS 1-349 in complex with UDP-GlcNAc [Staphylococcus aureus],5TZK_C Crystal structure of S. aureus TarS 1-349 in complex with UDP [Staphylococcus aureus]
5TZ8_A 2.02e-06 1 91 1 102
Crystalstructure of S. aureus TarS [Staphylococcus aureus],5TZ8_B Crystal structure of S. aureus TarS [Staphylococcus aureus],5TZ8_C Crystal structure of S. aureus TarS [Staphylococcus aureus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P44029 3.83e-56 3 244 4 248
Uncharacterized glycosyltransferase HI_0653 OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=HI_0653 PE=3 SV=1
Q9XC90 3.08e-47 2 250 4 253
Lipopolysaccharide core biosynthesis glycosyltransferase WaaE OS=Klebsiella pneumoniae OX=573 GN=waaE PE=3 SV=1
Q54435 1.16e-43 3 250 7 255
Lipopolysaccharide core biosynthesis glycosyltransferase KdtX OS=Serratia marcescens OX=615 GN=kdtX PE=3 SV=1
Q68XF1 3.48e-32 2 246 3 258
Uncharacterized glycosyltransferase RT0209 OS=Rickettsia typhi (strain ATCC VR-144 / Wilmington) OX=257363 GN=RT0209 PE=3 SV=1
Q1RJ60 9.99e-32 2 246 8 263
Uncharacterized glycosyltransferase RBE_0523 OS=Rickettsia bellii (strain RML369-C) OX=336407 GN=RBE_0523 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000035 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000953_00559.