Species | Pauljensenia sp000278725 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Actinomycetaceae; Pauljensenia; Pauljensenia sp000278725 | |||||||||||
CAZyme ID | MGYG000001006_00144 | |||||||||||
CAZy Family | GT0 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 9193; End: 10467 Strand: - |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
COG0438 | RfaB | 1.56e-11 | 88 | 423 | 6 | 379 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
cd03801 | GT4_PimA-like | 2.11e-10 | 87 | 408 | 3 | 355 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
AKU65238.1 | 1.37e-274 | 1 | 423 | 1 | 423 |
QQC44076.1 | 1.95e-274 | 1 | 423 | 1 | 423 |
QYB16392.1 | 1.34e-195 | 14 | 422 | 14 | 422 |
QAY74590.1 | 4.38e-162 | 56 | 424 | 43 | 411 |
SEB00738.1 | 1.70e-151 | 18 | 422 | 2 | 397 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
2X0E_A | 7.81e-08 | 154 | 422 | 124 | 413 | Complexstructure of WsaF with dTDP [Geobacillus stearothermophilus],2X0E_B Complex structure of WsaF with dTDP [Geobacillus stearothermophilus],2X0F_A Structure of WsaF in complex with dTDP-beta-L-Rha [Geobacillus stearothermophilus],2X0F_B Structure of WsaF in complex with dTDP-beta-L-Rha [Geobacillus stearothermophilus] |
2X0D_A | 1.04e-07 | 154 | 422 | 124 | 413 | APOstructure of WsaF [Geobacillus stearothermophilus],2X0D_B APO structure of WsaF [Geobacillus stearothermophilus] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q50864 | 1.65e-24 | 85 | 408 | 913 | 1243 | O-antigen biosynthesis protein RfbC OS=Myxococcus xanthus OX=34 GN=rfbC PE=4 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000063 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.