logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001156_01539

You are here: Home > Sequence: MGYG000001156_01539

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species SFHK01 sp004556395
Lineage Bacteria; Firmicutes_A; Clostridia_A; Christensenellales; CAG-74; SFHK01; SFHK01 sp004556395
CAZyme ID MGYG000001156_01539
CAZy Family GT35
CAZyme Description Maltodextrin phosphorylase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
780 87751.24 6.1323
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001156 2933732 MAG Austria Europe
Gene Location Start: 23588;  End: 25930  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT35 91 770 1.4e-230 0.9940652818991098

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
PRK14986 PRK14986 0.0 47 773 57 813
glycogen phosphorylase; Provisional
COG0058 GlgP 0.0 34 772 36 750
Glucan phosphorylase [Carbohydrate transport and metabolism].
PRK14985 PRK14985 0.0 31 768 38 794
maltodextrin phosphorylase; Provisional
TIGR02093 P_ylase 0.0 22 770 12 794
glycogen/starch/alpha-glucan phosphorylases. This family consists of phosphorylases. Members use phosphate to break alpha 1,4 linkages between pairs of glucose residues at the end of long glucose polymers, releasing alpha-D-glucose 1-phosphate. The nomenclature convention is to preface the name according to the natural substrate, as in glycogen phosphorylase, starch phosphorylase, maltodextrin phosphorylase, etc. Name differences among these substrates reflect differences in patterns of branching with alpha 1,6 linkages. Members include allosterically regulated and unregulated forms. A related family, TIGR02094, contains examples known to act well on particularly small alpha 1,4 glucans, as may be found after import from exogenous sources. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
cd04300 GT35_Glycogen_Phosphorylase 0.0 9 770 2 795
glycogen phosphorylase and similar proteins. This is a family of oligosaccharide phosphorylases. It includes yeast and mammalian glycogen phosphorylases, plant starch/glucan phosphorylase, as well as the maltodextrin phosphorylases of bacteria. The members of this family catalyze the breakdown of oligosaccharides into glucose-1-phosphate units. They are important allosteric enzymes in carbohydrate metabolism. The allosteric control mechanisms of yeast and mammalian members of this family are different from that of bacterial members. The members of this family belong to the GT-B structural superfamily of glycoslytransferases, which have characteristic N- and C-terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QTE68668.1 0.0 2 770 1 779
QUC67788.1 0.0 2 770 1 779
QUA53587.1 0.0 2 770 1 779
QTE75423.1 0.0 2 770 1 779
QTE71458.1 0.0 2 770 1 779

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2C4M_A 2.78e-225 24 777 26 795
Starchphosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_B Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_C Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_D Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae]
1Z8D_A 7.06e-195 47 772 68 830
ChainA, Glycogen phosphorylase, muscle form [Homo sapiens]
5OX0_A 1.15e-193 47 772 68 830
GlycogenPhosphorylase in complex with CK898 [Oryctolagus cuniculus]
3ZCP_A 1.63e-193 47 772 68 830
Rabbitmuscle glycogen phosphorylase b in complex with N- cyclohexancarbonyl-N-beta-D-glucopyranosyl urea determined at 1.83 A resolution [Oryctolagus cuniculus]
2GJ4_A 1.81e-193 47 772 56 818
Structureof rabbit muscle glycogen phosphorylase in complex with ligand [Oryctolagus cuniculus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P11217 4.87e-195 47 772 68 830
Glycogen phosphorylase, muscle form OS=Homo sapiens OX=9606 GN=PYGM PE=1 SV=6
Q9Z8N1 3.14e-194 34 770 44 814
Glycogen phosphorylase OS=Chlamydia pneumoniae OX=83558 GN=glgP PE=3 SV=1
O18751 5.46e-194 47 776 68 834
Glycogen phosphorylase, muscle form OS=Ovis aries OX=9940 GN=PYGM PE=2 SV=3
P79334 1.09e-193 47 776 68 834
Glycogen phosphorylase, muscle form OS=Bos taurus OX=9913 GN=PYGM PE=1 SV=3
P00489 1.78e-192 47 772 68 830
Glycogen phosphorylase, muscle form OS=Oryctolagus cuniculus OX=9986 GN=PYGM PE=1 SV=3

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.999994 0.000066 0.000002 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001156_01539.