logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001253_01682

You are here: Home > Sequence: MGYG000001253_01682

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Paramuribaculum sp001689535
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Muribaculaceae; Paramuribaculum; Paramuribaculum sp001689535
CAZyme ID MGYG000001253_01682
CAZy Family GT4
CAZyme Description Alpha-maltose-1-phosphate synthase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
364 MGYG000001253_21|CGC1 40161.68 10.5286
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001253 2271514 MAG Austria Europe
Gene Location Start: 29448;  End: 30542  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001253_01682.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 198 336 1e-23 0.8875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 1.96e-42 11 307 6 303
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03798 GT4_WlbH-like 1.56e-34 15 303 10 308
Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS.
COG0438 RfaB 4.20e-34 1 364 1 379
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03809 GT4_MtfB-like 1.07e-31 12 307 7 305
glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide.
cd03808 GT4_CapM-like 6.25e-31 19 307 10 299
capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QCD34526.1 5.93e-122 4 364 1 360
AHF12040.1 3.33e-114 4 362 1 361
BCI64460.1 2.86e-110 4 363 1 362
BAN68889.1 1.40e-109 4 359 1 360
QDO70344.1 1.17e-107 4 363 1 364

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6TVP_A 3.28e-23 15 362 26 399
Structureof Mycobacterium smegmatis alpha-maltose-1-phosphate synthase GlgM [Mycolicibacterium smegmatis MC2 155],6TVP_B Structure of Mycobacterium smegmatis alpha-maltose-1-phosphate synthase GlgM [Mycolicibacterium smegmatis MC2 155]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
A0R2E2 1.55e-22 15 362 12 385
Alpha-maltose-1-phosphate synthase OS=Mycolicibacterium smegmatis (strain ATCC 700084 / mc(2)155) OX=246196 GN=glgM PE=1 SV=1
P9WMY8 5.33e-13 15 359 12 390
Glycogen synthase OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT3116 PE=3 SV=1
P9WMY9 5.33e-13 15 359 12 390
Glycogen synthase OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv3032 PE=1 SV=1
B2SUK8 1.22e-09 19 304 15 301
GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase OS=Xanthomonas oryzae pv. oryzae (strain PXO99A) OX=360094 GN=gumH PE=3 SV=1
Q65CC1 3.97e-09 68 363 54 383
2-deoxystreptamine glucosyltransferase OS=Streptomyces kanamyceticus OX=1967 GN=kanF PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000057 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001253_01682.