logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001262_01289

You are here: Home > Sequence: MGYG000001262_01289

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Sphingomonas ginsenosidimutans
Lineage Bacteria; Proteobacteria; Alphaproteobacteria; Sphingomonadales; Sphingomonadaceae; Sphingomonas; Sphingomonas ginsenosidimutans
CAZyme ID MGYG000001262_01289
CAZy Family GT4
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
380 MGYG000001262_38|CGC1 41393.01 7.1506
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001262 3667136 MAG Italy Europe
Gene Location Start: 10451;  End: 11593  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001262_01289.

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04955 GT4-like 2.04e-59 14 371 1 378
glycosyltransferase family 4 proteins. This family is most closely related to the GT4 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in certain bacteria and Archaea.
pfam09314 DUF1972 1.84e-20 13 186 2 186
Domain of unknown function (DUF1972). Members of this family of functionally uncharacterized domains are found in bacterial glycosyltransferases and rhamnosyltransferases.
COG0438 RfaB 2.05e-12 13 374 1 377
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03801 GT4_PimA-like 2.79e-12 24 372 10 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
pfam13579 Glyco_trans_4_4 5.93e-08 28 184 1 158
Glycosyl transferase 4-like domain.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AXB75717.1 1.94e-163 13 373 4 364
ART81762.1 3.72e-144 13 372 3 362
AAZ97734.1 1.00e-140 13 371 3 361
QDY49587.1 3.86e-140 15 380 6 371
QEN01477.1 7.50e-140 17 373 8 364

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      help

has no Swissprot hit.

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000057 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001262_01289.