logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001269_00154

You are here: Home > Sequence: MGYG000001269_00154

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Rothia mucilaginosa
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Micrococcaceae; Rothia; Rothia mucilaginosa
CAZyme ID MGYG000001269_00154
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
291 MGYG000001269_2|CGC1 32908.62 6.1431
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001269 2178797 MAG Italy Europe
Gene Location Start: 38746;  End: 39621  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001269_00154.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 5 129 9.4e-20 0.7411764705882353

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
pfam00535 Glycos_transf_2 1.86e-17 4 125 1 123
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd04196 GT_2_like_d 2.11e-14 22 218 19 208
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
cd00761 Glyco_tranf_GTA_type 1.84e-13 5 122 1 120
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
cd04184 GT2_RfbC_Mx_like 9.74e-13 17 224 18 202
Myxococcus xanthus RfbC like proteins are required for O-antigen biosynthesis. The rfbC gene encodes a predicted protein of 1,276 amino acids, which is required for O-antigen biosynthesis in Myxococcus xanthus. It is a subfamily of Glycosyltransferase Family GT2, which includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds.
COG0463 WcaA 1.66e-09 1 101 3 104
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
BAS20041.1 2.27e-215 1 291 1 291
QXW97719.1 3.23e-215 1 291 1 291
BAI63882.1 5.36e-214 1 291 1 291
ATF63185.1 4.73e-208 1 291 1 291
ADP40297.1 7.09e-194 1 291 1 291

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5HEA_A 8.21e-06 3 226 7 229
CgTstructure in hexamer [Streptococcus parasanguinis FW213],5HEA_B CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEA_C CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEC_A CgT structure in dimer [Streptococcus parasanguinis FW213],5HEC_B CgT structure in dimer [Streptococcus parasanguinis FW213]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P9WLV8 5.80e-08 3 229 19 245
Uncharacterized protein MT1568 OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT1568 PE=4 SV=1
P9WLV9 5.80e-08 3 229 19 245
Uncharacterized protein Rv1518 OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv1518 PE=4 SV=1
Q58457 2.99e-07 16 127 24 137
Uncharacterized glycosyltransferase MJ1057 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1057 PE=3 SV=2
P77414 1.24e-06 3 96 7 101
Putative colanic acid biosynthesis glycosyl transferase WcaA OS=Escherichia coli (strain K12) OX=83333 GN=wcaA PE=4 SV=1
Q9ZDI9 4.70e-06 3 232 10 229
Uncharacterized glycosyltransferase RP339 OS=Rickettsia prowazekii (strain Madrid E) OX=272947 GN=RP339 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000054 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001269_00154.