logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001269_00428

You are here: Home > Sequence: MGYG000001269_00428

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Rothia mucilaginosa
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Micrococcaceae; Rothia; Rothia mucilaginosa
CAZyme ID MGYG000001269_00428
CAZy Family GT4
CAZyme Description Glycogen synthase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
374 40462.11 6.3093
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001269 2178797 MAG Italy Europe
Gene Location Start: 33954;  End: 35078  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001269_00428.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 200 344 2.6e-29 0.91875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 5.31e-47 10 366 3 365
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03811 GT4_GT28_WabH-like 2.56e-46 18 344 11 331
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
COG0438 RfaB 1.25e-44 10 373 6 381
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03798 GT4_WlbH-like 1.70e-35 76 369 87 376
Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS.
cd03819 GT4_WavL-like 4.69e-35 10 321 2 298
Vibrio cholerae WavL and similar sequences. This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
BAS19631.1 1.78e-263 1 374 1 374
ATF62796.1 5.69e-260 1 374 1 374
BAI65413.1 8.07e-257 7 370 5 368
QXW98971.1 7.88e-249 1 374 1 374
QQT89706.1 6.19e-179 8 373 7 374

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q94BX4 6.47e-13 16 323 18 321
Phosphatidylinositol N-acetylglucosaminyltransferase subunit A OS=Arabidopsis thaliana OX=3702 GN=PIGA PE=2 SV=1
P87172 6.77e-11 16 369 8 365
Phosphatidylinositol N-acetylglucosaminyltransferase gpi3 subunit OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=gpi3 PE=3 SV=1
Q59002 3.18e-10 11 317 8 322
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
Q8CWR6 4.90e-10 203 314 205 316
Alpha-monoglucosyldiacylglycerol synthase OS=Streptococcus pneumoniae (strain ATCC BAA-255 / R6) OX=171101 GN=spr0982 PE=1 SV=1
P37287 1.24e-08 16 317 44 340
Phosphatidylinositol N-acetylglucosaminyltransferase subunit A OS=Homo sapiens OX=9606 GN=PIGA PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000031 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001269_00428.