logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001270_01005

You are here: Home > Sequence: MGYG000001270_01005

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Corynebacterium sp902373425
Lineage Bacteria; Actinobacteriota; Actinomycetia; Mycobacteriales; Mycobacteriaceae; Corynebacterium; Corynebacterium sp902373425
CAZyme ID MGYG000001270_01005
CAZy Family GH13
CAZyme Description 1,4-alpha-glucan branching enzyme GlgB
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
727 MGYG000001270_61|CGC1 79394.22 4.8362
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001270 2256923 MAG Italy Europe
Gene Location Start: 7401;  End: 9584  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.141

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 172 487 7.2e-122 0.9968051118210862

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11325 AmyAc_GTHase 0.0 126 563 1 433
Alpha amylase catalytic domain found in Glycosyltrehalose trehalohydrolase (also called Maltooligosyl trehalose Trehalohydrolase). Glycosyltrehalose trehalohydrolase (GTHase) was discovered as part of a coupled system for the production of trehalose from soluble starch. In the first half of the reaction, glycosyltrehalose synthase (GTSase), an intramolecular glycosyl transferase, converts the glycosidic bond between the last two glucose residues of amylose from an alpha-1,4 bond to an alpha-1,1 bond, making a non-reducing glycosyl trehaloside. In the second half of the reaction, GTHase cleaves the alpha-1,4 glycosidic bond adjacent to the trehalose moiety to release trehalose and malto-oligosaccharide. Like isoamylase and other glycosidases that recognize branched oligosaccharides, GTHase contains an N-terminal extension and does not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Glycosyltrehalose Trehalohydrolase Maltooligosyltrehalose Trehalohydrolase
TIGR02402 trehalose_TreZ 0.0 20 580 3 511
malto-oligosyltrehalose trehalohydrolase. Members of this family are the trehalose biosynthetic enzyme malto-oligosyltrehalose trehalohydrolase, formally known as 4-alpha-D-{(1->4)-alpha-D-glucano}trehalose trehalohydrolase (EC 3.2.1.141). It is the TreZ protein of the TreYZ pathway for trehalose biosynthesis, and alternative to the OtsAB system. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
COG0296 GlgB 1.48e-140 19 575 39 560
1,4-alpha-glucan branching enzyme [Carbohydrate transport and metabolism].
cd11350 AmyAc_4 3.71e-55 147 573 1 390
Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11313 AmyAc_arch_bac_AmyA 1.91e-36 159 572 2 336
Alpha amylase catalytic domain found in archaeal and bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes firmicutes, bacteroidetes, and proteobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QRQ66125.1 0.0 13 727 1 715
QRP15098.1 0.0 1 727 1 727
ACR17526.1 0.0 1 727 1 727
QRP11001.1 0.0 1 727 1 727
ALA67617.1 5.65e-222 20 584 4 543

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1EHA_A 2.12e-119 118 568 60 489
CRYSTALSTRUCTURE OF GLYCOSYLTREHALOSE TREHALOHYDROLASE FROM SULFOLOBUS SOLFATARICUS [Saccharolobus solfataricus]
1EH9_A 2.12e-119 118 568 60 489
CrystalStructure Of Sulfolobus Solfataricus Glycosyltrehalose Trehalohydrolase [Saccharolobus solfataricus],3VGB_A Crystal structure of glycosyltrehalose trehalohydrolase (GTHase) from Sulfolobus solfataricus KM1 [Saccharolobus solfataricus]
3VGG_A 5.91e-119 118 568 60 489
Crystalstructure of glycosyltrehalose trehalohydrolase (E283Q) complexed with maltoheptaose [Saccharolobus solfataricus],3VGH_A Crystal structure of glycosyltrehalose trehalohydrolase (E283Q) complexed with maltotriosyltrehalose [Saccharolobus solfataricus]
3VGD_A 8.31e-119 118 568 60 489
Ctystalstructure of glycosyltrehalose trehalohydrolase (D252E) [Saccharolobus solfataricus]
3VGE_A 1.65e-118 118 568 60 489
Crystalstructure of glycosyltrehalose trehalohydrolase (D252S) [Saccharolobus solfataricus],3VGF_A Crystal structure of glycosyltrehalose trehalohydrolase (D252S) complexed with maltotriosyltrehalose [Saccharolobus solfataricus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P9WQ23 5.92e-164 68 565 17 501
Malto-oligosyltrehalose trehalohydrolase OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=treZ PE=1 SV=1
P9WQ22 5.92e-164 68 565 17 501
Malto-oligosyltrehalose trehalohydrolase OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=treZ PE=3 SV=1
Q53238 1.26e-152 123 584 75 538
Malto-oligosyltrehalose trehalohydrolase OS=Rhizobium sp. (strain M-11) OX=269089 GN=treZ PE=3 SV=1
Q44316 2.12e-151 92 584 35 540
Malto-oligosyltrehalose trehalohydrolase OS=Arthrobacter sp. (strain Q36) OX=104027 GN=treZ PE=3 SV=1
O52520 6.03e-142 123 586 68 533
Malto-oligosyltrehalose trehalohydrolase OS=Brevibacterium helvolum OX=1704 GN=treZ PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000043 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001270_01005.