logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001360_01742

You are here: Home > Sequence: MGYG000001360_01742

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Prevotella salivae
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Prevotella; Prevotella salivae
CAZyme ID MGYG000001360_01742
CAZy Family GH13
CAZyme Description Glycogen debranching enzyme
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1055 117250.16 5.2056
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001360 3139873 Isolate not provided not provided
Gene Location Start: 2044559;  End: 2047726  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.59

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 197 514 1.9e-85 0.667458432304038

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11339 AmyAc_bac_CMD_like_2 6.32e-122 35 577 1 344
Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11320 AmyAc_AmyMalt_CGTase_like 4.72e-50 33 508 1 348
Alpha amylase catalytic domain found in maltogenic amylases, cyclodextrin glycosyltransferase, and related proteins. Enzymes such as amylases, cyclomaltodextrinase (CDase), and cyclodextrin glycosyltransferase (CGTase) degrade starch to smaller oligosaccharides by hydrolyzing the alpha-D-(1,4) linkages between glucose residues. In the case of CGTases, an additional cyclization reaction is catalyzed yielding mixtures of cyclic oligosaccharides which are referred to as alpha-, beta-, or gamma-cyclodextrins (CDs), consisting of six, seven, or eight glucose residues, respectively. CGTases are characterized depending on the major product of the cyclization reaction. Besides having similar catalytic site residues, amylases and CGTases contain carbohydrate binding domains that are distant from the active site and are implicated in attaching the enzyme to raw starch granules and in guiding the amylose chain into the active site. The maltogenic alpha-amylase from Bacillus is a five-domain structure, unlike most alpha-amylases, but similar to that of cyclodextrin glycosyltransferase. In addition to the A, B, and C domains, they have a domain D and a starch-binding domain E. Maltogenic amylase is an endo-acting amylase that has activity on cyclodextrins, terminally modified linear maltodextrins, and amylose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
pfam00128 Alpha-amylase 4.06e-43 75 509 1 326
Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain.
cd11340 AmyAc_bac_CMD_like_3 2.39e-41 39 522 6 366
Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
COG0366 AmyA 2.88e-38 39 509 3 356
Glycosidase [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QNT65572.1 0.0 14 1055 10 1117
QNT65571.1 0.0 26 1055 14 1114
QNT65573.1 0.0 26 1055 26 1114
ASR47411.1 1.77e-208 30 673 348 948
AET61000.1 6.77e-208 30 673 348 947

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6WNI_A 6.75e-25 35 321 32 288
ChainA, Cyclomaltodextrin glucanotransferase [Caldanaerobacter subterraneus],6WNI_B Chain B, Cyclomaltodextrin glucanotransferase [Caldanaerobacter subterraneus],6WNU_A Chain A, Cyclomaltodextrin glucanotransferase [Caldanaerobacter subterraneus]
1QHO_A 1.04e-23 29 545 1 402
FIVE-DOMAINALPHA-AMYLASE FROM BACILLUS STEAROTHERMOPHILUS, MALTOSE/ACARBOSE COMPLEX [Geobacillus stearothermophilus],1QHP_A Five-Domain Alpha-Amylase From Bacillus Stearothermophilus, Maltose Complex [Geobacillus stearothermophilus]
1A47_A 4.13e-23 29 289 7 235
CGTASEFROM THERMOANAEROBACTERIUM THERMOSULFURIGENES EM1 IN COMPLEX WITH A MALTOHEXAOSE INHIBITOR [Thermoanaerobacterium thermosulfurigenes],1CIU_A Thermostable Cgtase From Thermoanaerobacterium Thermosulfurigenes Em1 At Ph 8.0. [Thermoanaerobacterium thermosulfurigenes]
3BMV_A 7.21e-23 29 289 7 235
ChainA, Cyclomaltodextrin glucanotransferase [Thermoanaerobacterium thermosulfurigenes],3BMW_A Chain A, Cyclomaltodextrin glucanotransferase [Thermoanaerobacterium thermosulfurigenes]
5A2B_A 1.16e-22 28 309 34 248
CrystalStructure of Anoxybacillus Alpha-amylase Provides Insights into a New Glycosyl Hydrolase Subclass [Anoxybacillus ayderensis],5A2C_A Crystal Structure of Anoxybacillus Alpha-amylase Provides Insights into a New Glycosyl Hydrolase Subclass [Anoxybacillus ayderensis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P21543 2.46e-29 28 317 738 969
Beta/alpha-amylase OS=Paenibacillus polymyxa OX=1406 PE=1 SV=1
Q05884 1.21e-25 75 689 98 643
Alpha-amylase OS=Streptomyces lividans OX=1916 GN=amy PE=1 SV=1
P08704 4.13e-24 33 626 39 511
Cyclomaltodextrin glucanotransferase OS=Klebsiella oxytoca OX=571 GN=cgt PE=3 SV=1
P26827 5.00e-24 3 289 11 262
Cyclomaltodextrin glucanotransferase OS=Thermoanaerobacterium thermosulfurigenes OX=33950 GN=amyA PE=1 SV=2
P19531 4.73e-23 28 545 33 435
Maltogenic alpha-amylase OS=Geobacillus stearothermophilus OX=1422 GN=amyM PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000201 0.999173 0.000156 0.000160 0.000141 0.000131

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001360_01742.