logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001404_00214

You are here: Home > Sequence: MGYG000001404_00214

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Paenibacillus_L senegalensis
Lineage Bacteria; Firmicutes; Bacilli; Paenibacillales; Paenibacillaceae; Paenibacillus_L; Paenibacillus_L senegalensis
CAZyme ID MGYG000001404_00214
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
279 32462.34 9.5428
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001404 5495033 Isolate not provided not provided
Gene Location Start: 231418;  End: 232257  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001404_00214.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 15 168 9.7e-18 0.9823529411764705

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd06433 GT_2_WfgS_like 3.48e-66 15 212 1 200
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
PRK10063 PRK10063 1.82e-40 13 233 2 223
colanic acid biosynthesis glycosyltransferase WcaE.
cd00761 Glyco_tranf_GTA_type 1.86e-18 16 127 1 115
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
cd04184 GT2_RfbC_Mx_like 8.57e-18 13 195 2 193
Myxococcus xanthus RfbC like proteins are required for O-antigen biosynthesis. The rfbC gene encodes a predicted protein of 1,276 amino acids, which is required for O-antigen biosynthesis in Myxococcus xanthus. It is a subfamily of Glycosyltransferase Family GT2, which includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds.
pfam00535 Glycos_transf_2 3.18e-13 15 166 1 164
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QOT10328.1 3.62e-86 11 267 12 266
ACX67545.1 4.15e-85 11 267 12 266
AWP30788.1 8.89e-82 11 267 12 266
AVV56781.1 3.58e-81 11 267 12 266
ANA79277.1 3.58e-81 11 267 12 266

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P71239 6.42e-27 13 233 2 223
Putative colanic acid biosynthesis glycosyl transferase WcaE OS=Escherichia coli (strain K12) OX=83333 GN=wcaE PE=4 SV=2
P9WMX8 2.32e-13 14 212 7 207
Uncharacterized glycosyltransferase MT1564 OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT1564 PE=3 SV=1
P9WMX9 2.32e-13 14 212 7 207
Uncharacterized glycosyltransferase Rv1514c OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv1514c PE=1 SV=1
A1KMV1 1.49e-10 13 185 5 179
PGL/p-HBAD biosynthesis glycosyltransferase BCG_2978 OS=Mycobacterium bovis (strain BCG / Pasteur 1173P2) OX=410289 GN=BCG_2978 PE=3 SV=2
A5U6W5 1.49e-10 13 185 5 179
PGL/p-HBAD biosynthesis glycosyltransferase MRA_2984 OS=Mycobacterium tuberculosis (strain ATCC 25177 / H37Ra) OX=419947 GN=MRA_2984 PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000072 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001404_00214.