logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001405_03098

You are here: Home > Sequence: MGYG000001405_03098

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Ferdinandcohnia timonensis
Lineage Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae_L; Ferdinandcohnia; Ferdinandcohnia timonensis
CAZyme ID MGYG000001405_03098
CAZy Family CBM66
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1262 MGYG000001405_3|CGC6 140832.3 4.9753
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001405 4608762 Isolate not provided not provided
Gene Location Start: 332380;  End: 336168  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.65

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 390 703 1.2e-79 0.9965870307167235
CBM66 966 1122 2.4e-45 0.9935483870967742
CBM66 54 209 2.2e-42 0.9935483870967742
CBM66 216 372 7.3e-33 0.9935483870967742

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd18622 GH32_Inu-like 3.70e-125 395 690 1 289
glycoside hydrolase family 32 protein such as Aspergillus ficuum endo-inulinase (Inu2). This subfamily of glycosyl hydrolase family GH32 includes endo-inulinase (inu2, EC 3.2.1.7), exo-inulinase (Inu1, EC 3.2.1.80), invertase (EC 3.2.1.26), and levan fructotransferase (LftA, EC 4.2.2.16), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
COG1621 SacC 8.76e-114 378 856 21 477
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
smart00640 Glyco_32 5.43e-111 390 828 1 437
Glycosyl hydrolases family 32.
pfam00251 Glyco_hydro_32N 1.50e-91 390 703 1 308
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
cd08996 GH32_FFase 6.11e-74 400 690 5 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AYA77838.1 0.0 1 1261 1 1259
QGH37061.1 0.0 48 1262 19 1233
QHA94135.1 0.0 51 1258 2 1207
QZN74433.1 0.0 48 1258 54 1266
APO46047.1 0.0 48 1258 54 1266

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1Y4W_A 5.84e-81 381 869 3 518
Crystalstructure of exo-inulinase from Aspergillus awamori in spacegroup P21 [Aspergillus awamori],1Y9G_A Crystal structure of exo-inulinase from Aspergillus awamori complexed with fructose [Aspergillus awamori],1Y9M_A Crystal structure of exo-inulinase from Aspergillus awamori in spacegroup P212121 [Aspergillus awamori]
3RWK_X 3.17e-71 385 863 28 512
Firstcrystal structure of an endo-inulinase, from Aspergillus ficuum: structural analysis and comparison with other GH32 enzymes. [Aspergillus ficuum],3SC7_X First crystal structure of an endo-inulinase, from Aspergillus ficuum: structural analysis and comparison with other GH32 enzymes. [Aspergillus ficuum]
3KF5_A 1.09e-51 375 837 2 479
ChainA, Invertase [Schwanniomyces occidentalis],3KF5_B Chain B, Invertase [Schwanniomyces occidentalis]
3KF3_A 1.39e-51 382 837 6 476
ChainA, Invertase [Schwanniomyces occidentalis],3KF3_B Chain B, Invertase [Schwanniomyces occidentalis]
3U75_A 1.05e-50 375 837 25 502
ChainA, Fructofuranosidase [Schwanniomyces occidentalis],3U75_B Chain B, Fructofuranosidase [Schwanniomyces occidentalis],3U75_C Chain C, Fructofuranosidase [Schwanniomyces occidentalis],3U75_D Chain D, Fructofuranosidase [Schwanniomyces occidentalis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O31411 0.0 41 910 54 921
Levanase (Fragment) OS=Bacillus sp. (strain L7) OX=62626 PE=1 SV=2
P05656 4.38e-160 378 1122 27 673
Levanase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacC PE=1 SV=1
E1ABX2 1.21e-81 381 869 22 537
Extracellular exo-inulinase inuE OS=Aspergillus ficuum OX=5058 GN=exoI PE=1 SV=1
Q76HP6 1.21e-81 381 869 22 537
Extracellular exo-inulinase inuE OS=Aspergillus niger OX=5061 GN=inuE PE=1 SV=1
A2R0E0 2.27e-81 381 869 22 537
Extracellular exo-inulinase inuE OS=Aspergillus niger (strain CBS 513.88 / FGSC A1513) OX=425011 GN=inuE PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.091218 0.898196 0.003212 0.005534 0.000998 0.000803

TMHMM  Annotations      download full data without filtering help

start end
7 29