logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001416_03098

You are here: Home > Sequence: MGYG000001416_03098

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Cellulomonas massiliensis
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Cellulomonadaceae; Cellulomonas; Cellulomonas massiliensis
CAZyme ID MGYG000001416_03098
CAZy Family GH13
CAZyme Description Oligo-1,6-glucosidase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
579 MGYG000001416_1|CGC39 64814.37 4.7211
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001416 3245988 Isolate not provided not provided
Gene Location Start: 3342418;  End: 3344157  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 5.4.99.11 3.2.1.10 3.2.1.20 3.2.1.70 3.2.1.- 2.4.1.-

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 38 397 5.9e-161 0.994269340974212

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11333 AmyAc_SI_OligoGlu_DGase 0.0 19 495 3 428
Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), dextran glucosidase (also called glucan 1,6-alpha-glucosidase), and related proteins. The sucrose isomerases (SIs) Isomaltulose synthase (EC 5.4.99.11) and Trehalose synthase (EC 5.4.99.16) catalyze the isomerization of sucrose and maltose to produce isomaltulose and trehalulose, respectively. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Dextran glucosidase (DGase, EC 3.2.1.70) hydrolyzes alpha-1,6-glucosidic linkages at the non-reducing end of panose, isomaltooligosaccharides and dextran to produce alpha-glucose.The common reaction chemistry of the alpha-amylase family enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. Both enzymes contain the three catalytic residues (Asp, Glu and Asp) common to the alpha-amylase family as well as two histidine residues which are predicted to be critical to binding the glucose residue adjacent to the scissile bond in the substrates. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
TIGR02403 trehalose_treC 0.0 15 579 1 543
alpha,alpha-phosphotrehalase. Trehalose is a glucose disaccharide that serves in many biological systems as a compatible solute for protection against hyperosmotic and thermal stress. This family describes trehalose-6-phosphate hydrolase, product of the treC (or treA) gene, which is often found together with a trehalose uptake transporter and a trehalose operon repressor.
PRK10933 PRK10933 0.0 14 577 6 548
trehalose-6-phosphate hydrolase; Provisional
cd11331 AmyAc_OligoGlu_like 1.95e-164 14 503 1 450
Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase) and related proteins. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomalto-oligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
COG0366 AmyA 9.44e-158 19 553 1 505
Glycosidase [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
VEH34326.1 0.0 11 579 6 570
AEE46838.1 0.0 11 579 6 570
QHT55040.1 0.0 11 579 6 570
QZN86550.1 0.0 11 578 6 571
QWC17083.1 0.0 10 578 5 573

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5DO8_A 4.89e-211 15 539 6 515
1.8Angstrom crystal structure of Listeria monocytogenes Lmo0184 alpha-1,6-glucosidase [Listeria monocytogenes EGD-e],5DO8_B 1.8 Angstrom crystal structure of Listeria monocytogenes Lmo0184 alpha-1,6-glucosidase [Listeria monocytogenes EGD-e],5DO8_C 1.8 Angstrom crystal structure of Listeria monocytogenes Lmo0184 alpha-1,6-glucosidase [Listeria monocytogenes EGD-e]
1UOK_A 7.19e-209 15 579 5 557
CrystalStructure Of B. Cereus Oligo-1,6-Glucosidase [Bacillus cereus]
5BRQ_A 8.76e-182 14 579 13 564
Crystalstructure of Bacillus licheniformis trehalose-6-phosphate hydrolase (TreA) [Bacillus licheniformis DSM 13 = ATCC 14580],5BRQ_B Crystal structure of Bacillus licheniformis trehalose-6-phosphate hydrolase (TreA) [Bacillus licheniformis DSM 13 = ATCC 14580],5BRQ_C Crystal structure of Bacillus licheniformis trehalose-6-phosphate hydrolase (TreA) [Bacillus licheniformis DSM 13 = ATCC 14580],5BRQ_D Crystal structure of Bacillus licheniformis trehalose-6-phosphate hydrolase (TreA) [Bacillus licheniformis DSM 13 = ATCC 14580]
4M8U_A 1.90e-181 15 574 4 554
TheStructure of MalL mutant enzyme V200A from Bacillus subtilus [Bacillus subtilis subsp. subtilis str. 168]
5BRP_A 3.52e-181 14 579 13 564
Crystalstructure of Bacillus licheniformis trehalose-6-phosphate hydrolase (TreA), mutant R201Q, in complex with PNG [Bacillus licheniformis DSM 13 = ATCC 14580],5BRP_B Crystal structure of Bacillus licheniformis trehalose-6-phosphate hydrolase (TreA), mutant R201Q, in complex with PNG [Bacillus licheniformis DSM 13 = ATCC 14580],5BRP_C Crystal structure of Bacillus licheniformis trehalose-6-phosphate hydrolase (TreA), mutant R201Q, in complex with PNG [Bacillus licheniformis DSM 13 = ATCC 14580],5BRP_D Crystal structure of Bacillus licheniformis trehalose-6-phosphate hydrolase (TreA), mutant R201Q, in complex with PNG [Bacillus licheniformis DSM 13 = ATCC 14580]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9K8U9 4.53e-230 15 577 5 556
Oligo-1,6-glucosidase OS=Alkalihalobacillus halodurans (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) OX=272558 GN=malL PE=3 SV=1
P29094 5.91e-221 15 579 5 559
Oligo-1,6-glucosidase OS=Parageobacillus thermoglucosidasius OX=1426 GN=malL PE=1 SV=1
P21332 3.93e-208 15 579 5 557
Oligo-1,6-glucosidase OS=Bacillus cereus OX=1396 GN=malL PE=1 SV=1
Q45101 1.40e-192 15 579 4 553
Oligo-1,6-glucosidase OS=Weizmannia coagulans OX=1398 GN=malL PE=3 SV=1
P39795 1.19e-187 11 579 4 557
Trehalose-6-phosphate hydrolase OS=Bacillus subtilis (strain 168) OX=224308 GN=treA PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000052 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001416_03098.