logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001429_00988

You are here: Home > Sequence: MGYG000001429_00988

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Alistipes_A ihumii
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Rikenellaceae; Alistipes_A; Alistipes_A ihumii
CAZyme ID MGYG000001429_00988
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
391 MGYG000001429_48|CGC2 44340.89 8.9014
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001429 2772824 Isolate not provided not provided
Gene Location Start: 350863;  End: 352038  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001429_00988.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 203 352 5.2e-19 0.90625

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03822 GT4_mannosyltransferase-like 2.61e-29 9 370 4 360
mannosyltransferases of glycosyltransferase family 4 and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. ORF704 in E. coli has been shown to be involved in the biosynthesis of O-specific mannose homopolysaccharides.
COG0438 RfaB 1.42e-22 7 386 4 381
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03801 GT4_PimA-like 3.80e-22 7 379 3 365
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03800 GT4_sucrose_synthase 4.70e-15 240 377 255 398
sucrose-phosphate synthase and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. The sucrose-phosphate synthases in this family may be unique to plants and photosynthetic bacteria. This enzyme catalyzes the synthesis of sucrose 6-phosphate from fructose 6-phosphate and uridine 5'-diphosphate-glucose, a key regulatory step of sucrose metabolism. The activity of this enzyme is regulated by phosphorylation and moderated by the concentration of various metabolites and light.
pfam00534 Glycos_transf_1 4.55e-13 239 361 35 157
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
BCG53842.1 1.70e-192 6 382 11 386
QGA24742.1 1.94e-192 6 382 3 378
AFL79017.1 1.33e-144 9 382 5 377
CBK64994.1 2.40e-141 9 386 17 393
BBL05606.1 2.41e-141 9 382 5 377

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3C4Q_A 2.25e-09 89 387 97 410
Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]
3C48_A 2.31e-09 89 387 117 430
Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
D4GU66 2.87e-14 204 379 194 368
Low-salt glycan biosynthesis hexosyltransferase Agl5 OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=agl5 PE=3 SV=1
D0L476 5.66e-14 187 381 212 412
D-inositol 3-phosphate glycosyltransferase OS=Gordonia bronchialis (strain ATCC 25592 / DSM 43247 / BCRC 13721 / JCM 3198 / KCTC 3076 / NBRC 16047 / NCTC 10667) OX=526226 GN=mshA PE=3 SV=1
Q5YP47 1.01e-12 157 375 186 409
D-inositol 3-phosphate glycosyltransferase OS=Nocardia farcinica (strain IFM 10152) OX=247156 GN=mshA PE=3 SV=1
C1AZ64 4.21e-11 168 375 197 407
D-inositol 3-phosphate glycosyltransferase OS=Rhodococcus opacus (strain B4) OX=632772 GN=mshA PE=3 SV=1
Q0SF06 5.69e-11 168 375 203 413
D-inositol 3-phosphate glycosyltransferase OS=Rhodococcus jostii (strain RHA1) OX=101510 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000067 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001429_00988.