Species | Butyricicoccus pullicaecorum | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Butyricicoccaceae; Butyricicoccus; Butyricicoccus pullicaecorum | |||||||||||
CAZyme ID | MGYG000001434_03119 | |||||||||||
CAZy Family | GH32 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 544748; End: 545491 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH32 | 5 | 147 | 6.9e-31 | 0.45051194539249145 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd18623 | GH32_ScrB-like | 3.28e-48 | 2 | 140 | 114 | 251 | glycoside hydrolase family 32 sucrose 6 phosphate hydrolase (sucrase). Glycosyl hydrolase family GH32 subgroup contains sucrose-6-phosphate hydrolase (sucrase, EC:3.2.1.26) among others. The enzyme cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
TIGR01322 | scrB_fam | 1.75e-38 | 5 | 140 | 140 | 279 | sucrose-6-phosphate hydrolase. [Energy metabolism, Biosynthesis and degradation of polysaccharides] |
COG1621 | SacC | 2.02e-36 | 5 | 150 | 155 | 300 | Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism]. |
pfam00251 | Glyco_hydro_32N | 2.90e-36 | 1 | 140 | 120 | 261 | Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure. |
cd08996 | GH32_FFase | 1.76e-33 | 5 | 140 | 117 | 246 | Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QRF11407.1 | 7.04e-26 | 5 | 140 | 151 | 289 |
QHW98627.1 | 9.69e-26 | 5 | 140 | 151 | 289 |
CCI78275.1 | 1.33e-25 | 5 | 140 | 151 | 289 |
QJM06141.1 | 1.84e-25 | 5 | 140 | 151 | 289 |
QFU51560.1 | 1.84e-25 | 5 | 140 | 151 | 289 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6NU7_A | 3.79e-15 | 5 | 140 | 158 | 296 | Structureof sucrose-6-phosphate hydrolase from Lactobacillus gasseri [Lactobacillus gasseri 224-1],6NU8_A Structure of sucrose-6-phosphate hydrolase from Lactobacillus gasseri in complex with fructose [Lactobacillus gasseri 224-1] |
7VCO_A | 1.04e-13 | 1 | 147 | 150 | 294 | ChainA, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara] |
1UYP_A | 6.47e-12 | 5 | 135 | 129 | 244 | Thethree-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_B The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_C The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_D The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_E The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_F The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8] |
1W2T_A | 1.59e-11 | 5 | 135 | 129 | 244 | beta-fructosidasefrom Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_B beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_C beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_D beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_E beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_F beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8] |
7BWB_A | 1.99e-09 | 5 | 137 | 173 | 303 | Bombyxmori GH32 beta-fructofuranosidase BmSUC1 [Bombyx mori] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P27217 | 9.55e-26 | 5 | 140 | 151 | 289 | Sucrose-6-phosphate hydrolase OS=Klebsiella pneumoniae OX=573 GN=scrB PE=1 SV=3 |
P37075 | 2.28e-24 | 5 | 140 | 151 | 289 | Sucrose-6-phosphate hydrolase OS=Salmonella typhimurium OX=90371 GN=scrB PE=3 SV=1 |
P13394 | 2.19e-20 | 8 | 135 | 163 | 292 | Sucrose-6-phosphate hydrolase OS=Vibrio alginolyticus OX=663 GN=scrB PE=2 SV=1 |
P07819 | 2.20e-18 | 5 | 137 | 153 | 288 | Sucrose-6-phosphate hydrolase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacA PE=3 SV=2 |
Q05936 | 1.21e-16 | 5 | 135 | 160 | 289 | Sucrose-6-phosphate hydrolase OS=Staphylococcus xylosus OX=1288 GN=scrB PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000052 | 0.000001 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.