Species | Paenibacillus_A rubinfantis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes; Bacilli; Paenibacillales; Paenibacillaceae; Paenibacillus_A; Paenibacillus_A rubinfantis | |||||||||||
CAZyme ID | MGYG000001525_00777 | |||||||||||
CAZy Family | GT2 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 110380; End: 111207 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT2 | 34 | 137 | 1.2e-19 | 0.6529411764705882 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
COG0463 | WcaA | 2.39e-18 | 31 | 134 | 3 | 111 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
cd04179 | DPM_DPG-synthase_like | 6.33e-17 | 35 | 138 | 1 | 113 | DPM_DPG-synthase_like is a member of the Glycosyltransferase 2 superfamily. DPM1 is the catalytic subunit of eukaryotic dolichol-phosphate mannose (DPM) synthase. DPM synthase is required for synthesis of the glycosylphosphatidylinositol (GPI) anchor, N-glycan precursor, protein O-mannose, and C-mannose. In higher eukaryotes,the enzyme has three subunits, DPM1, DPM2 and DPM3. DPM is synthesized from dolichol phosphate and GDP-Man on the cytosolic surface of the ER membrane by DPM synthase and then is flipped onto the luminal side and used as a donor substrate. In lower eukaryotes, such as Saccharomyces cerevisiae and Trypanosoma brucei, DPM synthase consists of a single component (Dpm1p and TbDpm1, respectively) that possesses one predicted transmembrane region near the C terminus for anchoring to the ER membrane. In contrast, the Dpm1 homologues of higher eukaryotes, namely fission yeast, fungi, and animals, have no transmembrane region, suggesting the existence of adapter molecules for membrane anchoring. This family also includes bacteria and archaea DPM1_like enzymes. However, the enzyme structure and mechanism of function are not well understood. The UDP-glucose:dolichyl-phosphate glucosyltransferase (DPG_synthase) is a transmembrane-bound enzyme of the endoplasmic reticulum involved in protein N-linked glycosylation. This enzyme catalyzes the transfer of glucose from UDP-glucose to dolichyl phosphate. This protein family belongs to Glycosyltransferase 2 superfamily. |
pfam00535 | Glycos_transf_2 | 4.55e-16 | 34 | 186 | 1 | 163 | Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. |
cd02522 | GT_2_like_a | 8.52e-15 | 33 | 119 | 1 | 86 | GT_2_like_a represents a glycosyltransferase family-2 subfamily with unknown function. Glycosyltransferase family 2 (GT-2) subfamily of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. |
cd00761 | Glyco_tranf_GTA_type | 5.17e-13 | 35 | 119 | 1 | 91 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
AZS18438.1 | 1.76e-113 | 32 | 275 | 1 | 240 |
AZK48368.1 | 7.28e-113 | 24 | 275 | 24 | 271 |
AWB45819.1 | 1.15e-95 | 32 | 275 | 34 | 274 |
QHT64088.1 | 1.45e-95 | 30 | 271 | 39 | 277 |
QDM46166.1 | 2.78e-95 | 24 | 274 | 22 | 268 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
B7VBN3 | 1.35e-06 | 28 | 136 | 4 | 122 | Undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase OS=Pseudomonas aeruginosa (strain LESB58) OX=557722 GN=arnC PE=3 SV=1 |
Q02R24 | 1.35e-06 | 28 | 136 | 4 | 122 | Undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase OS=Pseudomonas aeruginosa (strain UCBPP-PA14) OX=208963 GN=arnC PE=3 SV=1 |
Q9HY64 | 1.35e-06 | 28 | 136 | 4 | 122 | Undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) OX=208964 GN=arnC PE=3 SV=1 |
A6V1P1 | 2.42e-06 | 28 | 136 | 4 | 122 | Undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase OS=Pseudomonas aeruginosa (strain PA7) OX=381754 GN=arnC PE=3 SV=1 |
A0KGY7 | 3.13e-06 | 32 | 136 | 8 | 122 | Undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase OS=Aeromonas hydrophila subsp. hydrophila (strain ATCC 7966 / DSM 30187 / BCRC 13018 / CCUG 14551 / JCM 1027 / KCTC 2358 / NCIMB 9240 / NCTC 8049) OX=380703 GN=arnC PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000057 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.