logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001604_01724

You are here: Home > Sequence: MGYG000001604_01724

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Barnesiella sp002159975
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Barnesiellaceae; Barnesiella; Barnesiella sp002159975
CAZyme ID MGYG000001604_01724
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
390 MGYG000001604_16|CGC1 44964.86 9.1786
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001604 2665014 MAG China Asia
Gene Location Start: 48454;  End: 49626  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001604_01724.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 4 236 3.9e-23 0.9347826086956522

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
COG1216 GT2 6.74e-54 1 291 2 285
Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism].
cd04186 GT_2_like_c 2.29e-53 6 229 1 165
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
cd06433 GT_2_WfgS_like 3.03e-19 5 229 1 193
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
pfam00535 Glycos_transf_2 5.50e-18 5 114 1 110
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd06423 CESA_like 2.54e-17 17 205 12 180
CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AHF12323.1 5.04e-246 1 389 1 389
QUT48562.1 2.85e-125 3 281 2 278
AUR46192.1 1.80e-121 3 257 2 254
ATR93153.1 1.80e-121 3 257 2 254
AAQ65485.1 1.80e-121 3 257 2 254

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1H7L_A 4.54e-07 3 157 2 168
dTDP-MAGNESIUMCOMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1H7Q_A dTDP-MANGANESE COMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1QG8_A Native (Magnesium-Containing) Spsa From Bacillus Subtilis [Bacillus subtilis],1QGQ_A Udp-manganese Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis],1QGS_A Udp-Magnesium Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P9WMY2 2.75e-17 4 252 5 259
N-acetylglucosaminyl-diphospho-decaprenol L-rhamnosyltransferase OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=wbbL PE=3 SV=2
P9WMY3 2.75e-17 4 252 5 259
N-acetylglucosaminyl-diphospho-decaprenol L-rhamnosyltransferase OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=wbbL PE=1 SV=2
D4GU63 7.67e-09 4 211 20 205
Low-salt glycan biosynthesis hexosyltransferase Agl10 OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=agl10 PE=3 SV=1
P39621 1.87e-06 1 157 1 169
Spore coat polysaccharide biosynthesis protein SpsA OS=Bacillus subtilis (strain 168) OX=224308 GN=spsA PE=1 SV=1
P36667 2.65e-06 69 235 61 226
Rhamnosyltransferase WbbL OS=Escherichia coli (strain K12) OX=83333 GN=wbbL PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000052 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001604_01724.