logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001688_00732

You are here: Home > Sequence: MGYG000001688_00732

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Hungatella_A hathewayi_A
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Hungatella_A; Hungatella_A hathewayi_A
CAZyme ID MGYG000001688_00732
CAZy Family GT2
CAZyme Description N-acetylglucosaminyl-diphospho-decaprenol L-rhamnosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
253 MGYG000001688_5|CGC3 29745.22 7.8341
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001688 5654180 Isolate not provided not provided
Gene Location Start: 105836;  End: 106597  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001688_00732.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 6 186 8.3e-21 0.9882352941176471

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04186 GT_2_like_c 4.66e-46 7 223 1 165
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
COG1216 GT2 1.84e-40 1 249 1 247
Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism].
pfam00535 Glycos_transf_2 8.58e-14 6 144 1 144
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd00761 Glyco_tranf_GTA_type 3.04e-13 9 214 3 155
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
cd02526 GT2_RfbF_like 3.61e-11 9 223 3 204
RfbF is a putative dTDP-rhamnosyl transferase. Shigella flexneri RfbF protein is a putative dTDP-rhamnosyl transferase. dTDP rhamnosyl transferases of Shigella flexneri add rhamnose sugars to N-acetyl-glucosamine in the O-antigen tetrasaccharide repeat. Lipopolysaccharide O antigens are important virulence determinants for many bacteria. The variations of sugar composition, the sequence of the sugars and the linkages in the O antigen provide structural diversity of the O antigen.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CAB1238943.1 1.31e-79 6 249 5 251
QUA54184.1 1.10e-65 1 250 1 253
QUC68328.1 6.28e-65 1 250 1 253
QTE70905.1 1.01e-63 1 250 1 253
QTE74877.1 1.01e-63 1 250 1 253

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7MSP_A 1.52e-06 4 119 55 172
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSP_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]
7MSN_A 1.76e-06 4 119 55 172
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSN_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P9WMY2 4.06e-20 1 222 1 235
N-acetylglucosaminyl-diphospho-decaprenol L-rhamnosyltransferase OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=wbbL PE=3 SV=2
P9WMY3 4.06e-20 1 222 1 235
N-acetylglucosaminyl-diphospho-decaprenol L-rhamnosyltransferase OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=wbbL PE=1 SV=2
P36667 1.58e-08 65 245 61 243
Rhamnosyltransferase WbbL OS=Escherichia coli (strain K12) OX=83333 GN=wbbL PE=1 SV=1
O31986 9.62e-06 4 119 55 172
SPbeta prophage-derived glycosyltransferase SunS OS=Bacillus subtilis (strain 168) OX=224308 GN=sunS PE=1 SV=1
O64036 9.62e-06 4 119 55 172
Glycosyltransferase SunS OS=Bacillus phage SPbeta OX=66797 GN=sunS PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000033 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001688_00732.