Species | CAG-831 sp000432775 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; UBA932; CAG-831; CAG-831 sp000432775 | |||||||||||
CAZyme ID | MGYG000001774_01694 | |||||||||||
CAZy Family | GT4 | |||||||||||
CAZyme Description | Putative teichuronic acid biosynthesis glycosyltransferase TuaC | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 44403; End: 45554 Strand: + |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd03798 | GT4_WlbH-like | 1.49e-59 | 3 | 377 | 1 | 376 | Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS. |
cd03801 | GT4_PimA-like | 9.14e-57 | 2 | 375 | 1 | 366 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
cd03817 | GT4_UGDG-like | 2.43e-54 | 26 | 377 | 24 | 372 | UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol. |
cd03820 | GT4_AmsD-like | 7.13e-49 | 23 | 369 | 20 | 348 | amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran. |
cd03811 | GT4_GT28_WabH-like | 1.65e-46 | 2 | 342 | 1 | 326 | family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QIX65760.1 | 5.93e-192 | 1 | 378 | 1 | 378 |
SNV30181.1 | 5.64e-94 | 1 | 378 | 1 | 378 |
ADY32039.1 | 5.64e-94 | 1 | 378 | 1 | 378 |
QQU05443.1 | 5.49e-83 | 1 | 377 | 1 | 373 |
ALJ59040.1 | 6.37e-83 | 1 | 379 | 1 | 378 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
5D00_A | 3.50e-19 | 18 | 374 | 19 | 372 | Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168] |
3L01_A | 3.25e-17 | 88 | 338 | 108 | 389 | ChainA, GlgA glycogen synthase [Pyrococcus abyssi],3L01_B Chain B, GlgA glycogen synthase [Pyrococcus abyssi] |
3FRO_A | 3.42e-17 | 88 | 338 | 108 | 389 | Crystalstructure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi],3FRO_B Crystal structure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi],3FRO_C Crystal structure of Pyrococcus abyssi glycogen synthase with open and closed conformations [Pyrococcus abyssi] |
2BIS_A | 3.44e-17 | 88 | 338 | 109 | 390 | Structureof glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi],2BIS_B Structure of glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi],2BIS_C Structure of glycogen synthase from Pyrococcus abyssi [Pyrococcus abyssi] |
6N1X_A | 8.56e-16 | 96 | 379 | 83 | 376 | ChainA, Glycosyltransferase [Staphylococcus aureus subsp. aureus CN1] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q59002 | 7.58e-25 | 26 | 374 | 26 | 381 | Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1 |
Q8S4F6 | 5.64e-21 | 11 | 365 | 112 | 459 | Sulfoquinovosyl transferase SQD2 OS=Arabidopsis thaliana OX=3702 GN=SQD2 PE=1 SV=1 |
Q58577 | 1.08e-18 | 104 | 334 | 85 | 305 | Uncharacterized glycosyltransferase MJ1178 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1178 PE=3 SV=1 |
P42982 | 1.88e-18 | 18 | 374 | 17 | 370 | N-acetyl-alpha-D-glucosaminyl L-malate synthase OS=Bacillus subtilis (strain 168) OX=224308 GN=bshA PE=1 SV=2 |
O32272 | 2.82e-18 | 1 | 351 | 1 | 355 | Putative teichuronic acid biosynthesis glycosyltransferase TuaC OS=Bacillus subtilis (strain 168) OX=224308 GN=tuaC PE=2 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000067 | 0.000001 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.