logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001859_00005

You are here: Home > Sequence: MGYG000001859_00005

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes_C; Negativicutes; Acidaminococcales; Acidaminococcaceae; Phascolarctobacterium_A;
CAZyme ID MGYG000001859_00005
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
415 MGYG000001859_1|CGC1 48612.24 8.6111
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001859 2029434 MAG Denmark Europe
Gene Location Start: 4378;  End: 5625  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001859_00005.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 228 372 5.1e-24 0.89375

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04946 GT4_AmsK-like 9.84e-96 4 402 2 400
amylovoran biosynthesis glycosyltransferase AmsK and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmsK is involved in the biosynthesis of amylovoran, which functions as a virulence factor. It functions as a glycosyl transferase which transfers galactose from UDP-galactose to a lipid-linked amylovoran-subunit precursor. The members of this family are found mainly in bacteria and Archaea.
cd03801 GT4_PimA-like 1.88e-26 59 393 45 353
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
pfam00534 Glycos_transf_1 2.75e-25 228 385 1 156
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
cd03811 GT4_GT28_WabH-like 2.15e-21 68 387 21 342
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
pfam13692 Glyco_trans_1_4 5.05e-21 229 371 1 137
Glycosyl transferases group 1.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ACV29290.1 1.37e-158 1 410 1 410
AZW08932.1 2.81e-150 1 402 1 406
AYZ73070.1 2.81e-150 1 402 1 406
QUR50098.1 9.54e-130 1 408 1 415
QUT54970.1 9.54e-130 1 408 1 415

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6N1X_A 3.97e-10 228 407 199 376
ChainA, Glycosyltransferase [Staphylococcus aureus subsp. aureus CN1]
6D9T_A 4.30e-10 228 407 215 392
BshAfrom Staphylococcus aureus complexed with UDP [Staphylococcus aureus]
2JJM_A 3.12e-09 222 394 203 371
CrystalStructure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_B Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_C Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_D Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_E Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_F Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_G Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_H Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_I Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_J Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_K Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_L Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames]
3MBO_A 3.30e-09 222 394 223 391
CrystalStructure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_B Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_C Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_D Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_E Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_F Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_G Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_H Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis]
5D00_A 5.17e-08 142 359 105 329
Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q81ST7 1.64e-08 222 394 190 358
N-acetyl-alpha-D-glucosaminyl L-malate synthase OS=Bacillus anthracis OX=1392 GN=bshA PE=1 SV=1
Q3S2Y2 3.80e-08 222 407 313 502
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus agalactiae OX=1311 GN=gtfA PE=1 SV=1
A1C3L9 5.03e-08 152 407 255 503
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus parasanguinis OX=1318 GN=gtfA PE=1 SV=1
P39859 9.37e-08 197 344 167 316
Protein CapJ OS=Staphylococcus aureus OX=1280 GN=capJ PE=4 SV=1
P26388 2.29e-07 142 394 133 392
Putative colanic acid biosynthesis glycosyltransferase WcaL OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=wcaL PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.999996 0.000037 0.000001 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001859_00005.