Species | Phocaeicola sp900544675 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Phocaeicola; Phocaeicola sp900544675 | |||||||||||
CAZyme ID | MGYG000001925_01680 | |||||||||||
CAZy Family | GH32 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 58381; End: 60507 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH32 | 245 | 544 | 1.6e-67 | 0.9965870307167235 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd08996 | GH32_FFase | 7.72e-98 | 251 | 535 | 1 | 281 | Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
smart00640 | Glyco_32 | 5.10e-95 | 245 | 664 | 1 | 436 | Glycosyl hydrolases family 32. |
COG1621 | SacC | 6.77e-78 | 229 | 701 | 18 | 486 | Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism]. |
pfam00251 | Glyco_hydro_32N | 5.31e-65 | 245 | 544 | 1 | 308 | Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure. |
cd18624 | GH32_Fruct1-like | 4.08e-49 | 251 | 535 | 1 | 296 | glycoside hydrolase family 32 protein such as Arabidopsis thaliana cell-wall invertase 1 (AtBFruct1;Fruct1;AtcwINV1;At3g13790). This subfamily of glycosyl hydrolase family GH32 includes fructan beta-(2,1)-fructosidase and fructan 1-exohydrolase IIa (1-FEH IIa, EC 3.2.1.153), cell-wall invertase 1 (EC 3.2.1.26), sucrose:fructan 6-fructosyltransferase (6-Sst/6-Dft, EC 2.4.1.10), and levan fructosyltransferases (EC 2.4.1.-) among others. This enzyme cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QUT60634.1 | 2.54e-299 | 12 | 708 | 7 | 711 |
QQA29115.1 | 2.54e-299 | 12 | 708 | 7 | 711 |
QUT98081.1 | 3.61e-299 | 12 | 708 | 7 | 711 |
BBK87444.1 | 3.61e-299 | 12 | 708 | 7 | 711 |
AVM58394.1 | 1.46e-298 | 12 | 708 | 7 | 711 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
7VCO_A | 2.21e-54 | 242 | 690 | 27 | 474 | ChainA, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara] |
3PIG_A | 2.08e-37 | 242 | 664 | 41 | 475 | beta-fructofuranosidasefrom Bifidobacterium longum [Bifidobacterium longum],3PIG_B beta-fructofuranosidase from Bifidobacterium longum [Bifidobacterium longum],3PIJ_A beta-fructofuranosidase from Bifidobacterium longum - complex with fructose [Bifidobacterium longum],3PIJ_B beta-fructofuranosidase from Bifidobacterium longum - complex with fructose [Bifidobacterium longum] |
1UYP_A | 7.45e-35 | 241 | 676 | 3 | 408 | Thethree-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_B The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_C The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_D The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_E The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_F The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8] |
3UGF_A | 1.07e-34 | 224 | 674 | 2 | 506 | Crystalstructure of a 6-SST/6-SFT from Pachysandra terminalis [Pachysandra terminalis],3UGF_B Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis [Pachysandra terminalis],3UGG_A Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis in complex with 1-kestose [Pachysandra terminalis],3UGG_B Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis in complex with 1-kestose [Pachysandra terminalis],3UGH_A Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis in complex with 6-kestose [Pachysandra terminalis],3UGH_B Crystal structure of a 6-SST/6-SFT from Pachysandra terminalis in complex with 6-kestose [Pachysandra terminalis] |
1W2T_A | 1.37e-34 | 241 | 676 | 3 | 408 | beta-fructosidasefrom Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_B beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_C beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_D beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_E beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_F beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
F8DVG5 | 6.02e-51 | 242 | 704 | 30 | 504 | Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 10988 / DSM 424 / LMG 404 / NCIMB 8938 / NRRL B-806 / ZM1) OX=555217 GN=sacA PE=3 SV=1 |
P0DJA7 | 1.99e-49 | 242 | 704 | 30 | 504 | Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) OX=264203 GN=sacA PE=1 SV=1 |
Q84PN8 | 3.30e-44 | 241 | 704 | 62 | 588 | Fructan 1-exohydrolase w1 OS=Triticum aestivum OX=4565 GN=1-FEHw1 PE=1 SV=1 |
P40714 | 5.81e-44 | 242 | 674 | 26 | 450 | Sucrose-6-phosphate hydrolase OS=Escherichia coli OX=562 GN=cscA PE=3 SV=1 |
B6DZD0 | 6.10e-44 | 241 | 704 | 62 | 588 | Fructan 1-exohydrolase OS=Triticum urartu OX=4572 GN=1-FEH PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
0.001073 | 0.438724 | 0.559517 | 0.000269 | 0.000218 | 0.000180 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.