logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002344_02524

You are here: Home > Sequence: MGYG000002344_02524

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Acinetobacter baumannii
Lineage Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Moraxellaceae; Acinetobacter; Acinetobacter baumannii
CAZyme ID MGYG000002344_02524
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
255 29394.56 9.3814
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002344 3953404 Isolate United States North America
Gene Location Start: 2623358;  End: 2624125  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002344_02524.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 7 153 1.3e-21 0.8941176470588236

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd02511 Beta4Glucosyltransferase 1.03e-66 7 228 3 227
UDP-glucose LOS-beta-1,4 glucosyltransferase is required for biosynthesis of lipooligosaccharide. UDP-glucose: lipooligosaccharide (LOS) beta-1-4-glucosyltransferase catalyzes the addition of the first residue, glucose, of the lacto-N-neotetrase structure to HepI of the LOS inner core. LOS is the major constituent of the outer leaflet of the outer membrane of gram-positive bacteria. It consists of a short oligosaccharide chain of variable composition (alpha chain) attached to a branched inner core which is lined in turn to lipid A. Beta 1,4 glucosyltransferase is required to attach the alpha chain to the inner core.
pfam00535 Glycos_transf_2 6.35e-20 7 145 1 148
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd00761 Glyco_tranf_GTA_type 1.26e-16 8 113 1 116
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
COG0463 WcaA 3.34e-14 1 244 2 254
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd06433 GT_2_WfgS_like 1.33e-13 7 137 1 135
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QAT00332.1 1.51e-186 1 255 1 255
QHB91453.1 1.51e-186 1 255 1 255
QAS92893.1 1.51e-186 1 255 1 255
QEY05522.1 1.51e-186 1 255 1 255
QEE56067.1 1.51e-186 1 255 1 255

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7MSP_A 2.31e-09 10 179 60 236
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSP_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]
7MSN_A 2.78e-09 10 179 60 236
ChainA, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168],7MSN_B Chain B, SPbeta prophage-derived glycosyltransferase SunS [Bacillus subtilis subsp. subtilis str. 168]
7MSK_A 6.83e-09 3 152 67 212
ChainA, Glyco_trans_2-like domain-containing protein [Bacillus thuringiensis serovar andalousiensis BGSC 4AW1],7MSK_B Chain B, Glyco_trans_2-like domain-containing protein [Bacillus thuringiensis serovar andalousiensis BGSC 4AW1]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9R9M9 7.36e-42 3 247 4 255
Lipopolysaccharide core biosynthesis glycosyltransferase LpsC OS=Rhizobium meliloti (strain 1021) OX=266834 GN=lpsC PE=3 SV=2
Q1RJ60 1.56e-35 7 249 10 264
Uncharacterized glycosyltransferase RBE_0523 OS=Rickettsia bellii (strain RML369-C) OX=336407 GN=RBE_0523 PE=3 SV=1
Q4UMM0 1.70e-35 1 254 1 263
Uncharacterized glycosyltransferase RF_0337 OS=Rickettsia felis (strain ATCC VR-1525 / URRWXCal2) OX=315456 GN=RF_0337 PE=3 SV=1
O05944 1.14e-34 1 244 1 254
Uncharacterized glycosyltransferase RP128 OS=Rickettsia prowazekii (strain Madrid E) OX=272947 GN=RP218 PE=3 SV=1
Q92IX8 3.53e-34 1 254 1 268
Uncharacterized glycosyltransferase RC0292 OS=Rickettsia conorii (strain ATCC VR-613 / Malish 7) OX=272944 GN=RC0292 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000048 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002344_02524.