Species | Streptococcus anginosus_C | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus; Streptococcus anginosus_C | |||||||||||
CAZyme ID | MGYG000002347_00429 | |||||||||||
CAZy Family | GH13 | |||||||||||
CAZyme Description | Glucan 1,4-alpha-maltohexaosidase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 422280; End: 423728 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH13 | 30 | 372 | 3.9e-149 | 0.9970760233918129 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd11318 | AmyAc_bac_fung_AmyA | 0.0 | 3 | 392 | 1 | 389 | Alpha amylase catalytic domain found in bacterial and fungal Alpha amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes bacterial and fungal proteins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
PRK09441 | PRK09441 | 0.0 | 1 | 480 | 1 | 479 | cytoplasmic alpha-amylase; Reviewed |
cd11314 | AmyAc_arch_bac_plant_AmyA | 3.13e-42 | 6 | 396 | 2 | 295 | Alpha amylase catalytic domain found in archaeal, bacterial, and plant Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes AmyA from bacteria, archaea, water fleas, and plants. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
COG0366 | AmyA | 2.47e-20 | 29 | 418 | 36 | 404 | Glycosidase [Carbohydrate transport and metabolism]. |
cd11339 | AmyAc_bac_CMD_like_2 | 6.16e-20 | 202 | 368 | 125 | 293 | Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QOG24631.1 | 0.0 | 1 | 482 | 1 | 482 |
VEE12571.1 | 0.0 | 1 | 482 | 1 | 482 |
AIK77735.1 | 0.0 | 1 | 482 | 1 | 482 |
ANW85222.1 | 0.0 | 1 | 482 | 1 | 482 |
AZQ41830.1 | 0.0 | 1 | 482 | 1 | 482 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
1W9X_A | 9.71e-180 | 3 | 479 | 2 | 478 | ChainA, Alpha Amylase [Sutcliffiella halmapala] |
2GJP_A | 1.12e-179 | 3 | 479 | 6 | 482 | ChainA, alpha-amylase [Sutcliffiella halmapala],2GJR_A Chain A, alpha-amylase [Sutcliffiella halmapala] |
1WP6_A | 2.97e-177 | 3 | 479 | 6 | 482 | Crystalstructure of maltohexaose-producing amylase from alkalophilic Bacillus sp.707. [Bacillus sp. 707],1WPC_A Crystal structure of maltohexaose-producing amylase complexed with pseudo-maltononaose [Bacillus sp. 707],2D3L_A Crystal structure of maltohexaose-producing amylase from Bacillus sp.707 complexed with maltopentaose. [Bacillus sp. 707],2D3N_A Crystal structure of maltohexaose-producing amylase from Bacillus sp.707 complexed with maltohexaose [Bacillus sp. 707] |
2DIE_A | 2.58e-173 | 3 | 482 | 6 | 485 | Alkalinealpha-amylase AmyK from Bacillus sp. KSM-1378 [Bacillus sp. (in: Bacteria)] |
1HVX_A | 1.65e-171 | 3 | 479 | 5 | 480 | BACILLUSSTEAROTHERMOPHILUS ALPHA-AMYLASE [Geobacillus stearothermophilus] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P19571 | 5.02e-176 | 3 | 479 | 39 | 515 | Glucan 1,4-alpha-maltohexaosidase OS=Bacillus sp. (strain 707) OX=1416 PE=1 SV=1 |
P06279 | 1.23e-171 | 3 | 479 | 39 | 514 | Alpha-amylase OS=Geobacillus stearothermophilus OX=1422 GN=amyS PE=1 SV=3 |
P06278 | 1.08e-168 | 3 | 479 | 33 | 509 | Alpha-amylase OS=Bacillus licheniformis OX=1402 GN=amyS PE=1 SV=1 |
P00692 | 4.93e-165 | 3 | 479 | 33 | 511 | Alpha-amylase OS=Bacillus amyloliquefaciens OX=1390 PE=1 SV=1 |
P26613 | 7.09e-139 | 1 | 479 | 1 | 489 | Cytoplasmic alpha-amylase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=amyA PE=3 SV=3 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000048 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.