Species | Methanomethylophilus alvus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Archaea; Thermoplasmatota; Thermoplasmata; Methanomassiliicoccales; Methanomethylophilaceae; Methanomethylophilus; Methanomethylophilus alvus | |||||||||||
CAZyme ID | MGYG000002456_00096 | |||||||||||
CAZy Family | GT2 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 83764; End: 85905 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT2 | 86 | 206 | 1.2e-23 | 0.7294117647058823 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd04186 | GT_2_like_c | 2.11e-45 | 87 | 296 | 1 | 166 | Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. |
COG1216 | GT2 | 1.37e-43 | 83 | 325 | 3 | 250 | Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism]. |
cd03801 | GT4_PimA-like | 2.42e-26 | 368 | 711 | 18 | 365 | phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea. |
pfam13692 | Glyco_trans_1_4 | 2.77e-26 | 541 | 679 | 1 | 138 | Glycosyl transferases group 1. |
pfam00535 | Glycos_transf_2 | 5.56e-23 | 86 | 206 | 1 | 124 | Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
AGI84855.1 | 0.0 | 1 | 713 | 8 | 720 |
AYQ54295.1 | 0.0 | 91 | 713 | 1 | 623 |
BAU26503.1 | 5.36e-188 | 12 | 710 | 368 | 1064 |
AIQ55096.1 | 7.39e-187 | 12 | 712 | 380 | 1082 |
AEW01790.1 | 3.72e-183 | 83 | 713 | 402 | 1035 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
5HEA_A | 5.98e-06 | 84 | 193 | 6 | 118 | CgTstructure in hexamer [Streptococcus parasanguinis FW213],5HEA_B CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEA_C CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEC_A CgT structure in dimer [Streptococcus parasanguinis FW213],5HEC_B CgT structure in dimer [Streptococcus parasanguinis FW213] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q48455 | 1.34e-18 | 479 | 710 | 153 | 387 | Uncharacterized 44.6 kDa protein in cps region OS=Klebsiella pneumoniae OX=573 PE=4 SV=1 |
P55465 | 5.49e-18 | 34 | 323 | 567 | 874 | Uncharacterized protein y4gI OS=Sinorhizobium fredii (strain NBRC 101917 / NGR234) OX=394 GN=NGR_a03550 PE=4 SV=1 |
Q50864 | 1.44e-14 | 155 | 299 | 649 | 797 | O-antigen biosynthesis protein RfbC OS=Myxococcus xanthus OX=34 GN=rfbC PE=4 SV=1 |
Q57287 | 2.95e-09 | 83 | 316 | 5 | 248 | Uncharacterized glycosyltransferase HI_1578 OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=HI_1578 PE=3 SV=1 |
A0A0H2UR96 | 4.42e-09 | 84 | 202 | 4 | 125 | Glycosyltransferase GlyG OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=glyG PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000057 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.