logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002531_01233

You are here: Home > Sequence: MGYG000002531_01233

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Pseudobutyrivibrio fibrisolvens_A
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Pseudobutyrivibrio; Pseudobutyrivibrio fibrisolvens_A
CAZyme ID MGYG000002531_01233
CAZy Family GH43
CAZyme Description Extracellular endo-alpha-(1->5)-L-arabinanase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
286 31987.53 4.442
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002531 3116879 Isolate not provided not provided
Gene Location Start: 1199098;  End: 1199958  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002531_01233.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH43 1 174 1.2e-64 0.5387096774193548

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd18832 GH43_GsAbnA-like 4.90e-90 1 169 158 332
Glycosyl hydrolase family 43 protein such as Geobacillus stearothermophilus endo-alpha-1,5-L-arabinanase AbnA. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities. It includes Geobacillus stearothermophilus T-6 NCIMB 40222 AbnA, Bacillus subtilis subsp. subtilis str. 168 (Abn2;YxiA;J3A;BSU39330) (Arb43B), and Thermotoga petrophila RKU-1 (AbnA;TpABN;Tpet_0637). These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
COG3507 XynB2 3.66e-51 2 286 159 448
Beta-xylosidase [Carbohydrate transport and metabolism].
cd08998 GH43_Arb43a-like 1.06e-31 1 166 130 275
Glycosyl hydrolase family 43 protein such as Bacillus subtilis subsp. subtilis str. 168 endo-alpha-1,5-L-arabinanase Arb43A. This glycosyl hydrolase family 43 (GH43) subgroup belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes such as the Bacillus subtilis arabinanase Abn2, that hydrolyzes sugar beet arabinan (branched), linear alpha-1,5-L-arabinan and pectin, are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
pfam16369 GH43_C 2.56e-31 178 283 1 106
C-terminal of Glycosyl hydrolases family 43. This is the C-terminal of Glycosyl hydrolases family 43. It is around 100 residues in length from various Bacteroides species. The function of this family is unknown.
cd08988 GH43_ABN 3.88e-31 2 167 132 276
Glycosyl hydrolase family 43. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CBK74092.1 4.45e-219 3 286 1 284
QFJ55213.1 2.72e-193 1 286 224 509
AEN95753.1 9.09e-167 1 286 239 524
CBL14030.1 2.06e-143 1 286 230 515
CBL08764.1 5.85e-143 1 286 230 515

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2X8F_A 3.62e-73 1 285 182 469
Nativestructure of Endo-1,5-alpha-L-arabinanases from Bacillus subtilis [Bacillus subtilis],2X8F_B Native structure of Endo-1,5-alpha-L-arabinanases from Bacillus subtilis [Bacillus subtilis]
2X8S_A 3.62e-73 1 285 182 469
CrystalStructure of the Abn2 D171A mutant in complex with arabinotriose [Bacillus subtilis],2X8S_B Crystal Structure of the Abn2 D171A mutant in complex with arabinotriose [Bacillus subtilis]
4COT_A 3.90e-72 1 285 182 469
Theimportance of the Abn2 calcium cluster in the endo-1,5- arabinanase activity from Bacillus subtilis [Bacillus subtilis subsp. subtilis str. 168]
2X8T_A 1.15e-71 1 285 182 469
CrystalStructure of the Abn2 H318A mutant [Bacillus subtilis],2X8T_B Crystal Structure of the Abn2 H318A mutant [Bacillus subtilis]
5HO9_A 4.29e-71 1 285 249 546
Structureof truncated AbnA (domains 1-3), a GH43 arabinanase from Geobacilllus stearothermophilus, in complex with arabinooctaose [Geobacillus stearothermophilus],5HO9_B Structure of truncated AbnA (domains 1-3), a GH43 arabinanase from Geobacilllus stearothermophilus, in complex with arabinooctaose [Geobacillus stearothermophilus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P42293 1.93e-72 1 285 182 469
Extracellular endo-alpha-(1->5)-L-arabinanase 2 OS=Bacillus subtilis (strain 168) OX=224308 GN=abn2 PE=1 SV=2
A5IKD4 3.29e-67 1 285 181 468
Extracellular endo-alpha-(1->5)-L-arabinanase OS=Thermotoga petrophila (strain ATCC BAA-488 / DSM 13995 / JCM 10881 / RKU-1) OX=390874 GN=Tpet_0637 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000004 0.000036 0.000001 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002531_01233.