logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002563_01290

You are here: Home > Sequence: MGYG000002563_01290

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Romboutsia timonensis
Lineage Bacteria; Firmicutes_A; Clostridia; Peptostreptococcales; Peptostreptococcaceae; Romboutsia; Romboutsia timonensis
CAZyme ID MGYG000002563_01290
CAZy Family GH38
CAZyme Description Mannosylglycerate hydrolase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
898 MGYG000002563_26|CGC1 103594.38 5.2731
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002563 2922672 MAG China Asia
Gene Location Start: 6276;  End: 8972  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.-

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH38 5 274 2.3e-75 0.9442379182156134

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
COG0383 AMS1 0.0 1 898 2 942
Alpha-mannosidase [Carbohydrate transport and metabolism].
PRK09819 PRK09819 6.96e-170 1 898 2 875
mannosylglycerate hydrolase.
cd10814 GH38N_AMII_SpGH38_like 3.33e-166 4 287 1 271
N-terminal catalytic domain of SPGH38, a putative alpha-mannosidase of Streptococcus pyogenes, and its prokaryotic homologs; glycoside hydrolase family 38 (GH38). The subfamily is represented by SpGH38 of Streptococcus pyogenes, which has been assigned as a putative alpha-mannosidase, and is encoded by ORF spy1604. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. A divalent metal ion, such as a zinc ion, is required for its activity. SpGH38 is inhibited by swainsonine. The absence of any secretion signal peptide suggests that SpGH38 may be intracellular.
cd10790 GH38N_AMII_1 1.01e-103 6 287 3 273
N-terminal catalytic domain of putative prokaryotic class II alpha-mannosidases; glycoside hydrolase family 38 (GH38). This mainly bacterial subfamily corresponds to a group of putative class II alpha-mannosidases, including various proteins assigned as alpha-mannosidases, Streptococcus pyogenes (SpGH38) encoded by ORF spy1604. Escherichia coli MngB encoded by the mngB/ybgG gene, and Thermotoga maritime TMM, and similar proteins. SpGH38 targets alpha-1,3 mannosidic linkages. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. MngB exhibits alpha-mannosidase activity that catalyzes the conversion of 2-O-(6-phospho-alpha-mannosyl)-D-glycerate to mannose-6-phosphate and glycerate in the pathway which enables use of mannosyl-D-glycerate as a sole carbon source. TMM is a homodimeric enzyme that hydrolyzes p-nitrophenyl-alpha-D-mannopyranoside, alpha -1,2-mannobiose, alpha -1,3-mannobiose, alpha -1,4-mannobiose, and alpha -1,6-mannobiose. The GH38 family contains retaining glycosyl hydrolases that employ a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. Divalent metal ions, such as zinc or cobalt ions, are suggested to be required for the catalytic activities of typical class II alpha-mannosidases. However, TMM requires the cobalt or cadmium for its activity. The cadmium ion dependency is unique to TMM. Moreover, TMM is inhibited by swainsonine but not 1-deoxymannojirimycin, which is in agreement with the features of cytosolic alpha-mannosidase.
cd10815 GH38N_AMII_EcMngB_like 5.84e-94 4 287 1 270
N-terminal catalytic domain of Escherichia coli alpha-mannosidase MngB and its bacterial homologs; glycoside hydrolase family 38 (GH38). The bacterial subfamily is represented by Escherichia coli alpha-mannosidase MngB, which is encoded by the mngB gene (previously called ybgG). MngB exhibits alpha-mannosidase activity that converts 2-O-(6-phospho-alpha-mannosyl)-D-glycerate to mannose-6-phosphate and glycerate in the pathway which enables use of mannosyl-D-glycerate as a sole carbon source. A divalent metal ion is required for its activity.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QEZ68631.1 0.0 1 897 1 899
QJS18223.1 0.0 3 896 2 894
SYX86606.1 0.0 2 898 3 904
QDM44645.1 0.0 2 898 3 904
ASN04176.1 0.0 2 895 4 904

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5KBP_A 1.43e-296 2 894 6 894
Thecrystal structure of an alpha-mannosidase from Enterococcus faecalis V583 [Enterococcus faecalis V583],5KBP_B The crystal structure of an alpha-mannosidase from Enterococcus faecalis V583 [Enterococcus faecalis V583]
3LVT_A 5.86e-288 2 894 6 894
TheCrystal Structure of a Protein in the Glycosyl Hydrolase Family 38 from Enterococcus faecalis to 2.55A [Enterococcus faecalis V583]
2WYH_A 2.26e-264 3 896 26 919
Structureof the Streptococcus pyogenes family GH38 alpha-mannosidase [Streptococcus pyogenes M1 GAS],2WYH_B Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase [Streptococcus pyogenes M1 GAS],2WYI_A Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase complexed with swainsonine [Streptococcus pyogenes M1 GAS],2WYI_B Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase complexed with swainsonine [Streptococcus pyogenes M1 GAS]
6LZ1_A 4.39e-14 2 897 280 1075
Structureof S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-],6LZ1_B Structure of S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-],6LZ1_C Structure of S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-],6LZ1_D Structure of S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-]
7DD9_A 4.88e-14 2 897 280 1075
ChainA, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct],7DD9_C Chain C, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct],7DD9_E Chain E, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct],7DD9_G Chain G, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9KER1 3.48e-275 1 895 1 893
Putative mannosylglycerate hydrolase OS=Alkalihalobacillus halodurans (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) OX=272558 GN=mngB PE=3 SV=2
P54746 2.15e-90 5 854 7 827
Mannosylglycerate hydrolase OS=Escherichia coli (strain K12) OX=83333 GN=mngB PE=1 SV=2
Q9UT61 2.35e-13 2 897 280 1075
Alpha-mannosidase OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=ams1 PE=1 SV=1
Q54K67 9.23e-13 8 882 260 1052
Alpha-mannosidase G OS=Dictyostelium discoideum OX=44689 GN=manG PE=1 SV=1
P22855 3.26e-09 8 396 294 672
Alpha-mannosidase OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=AMS1 PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000047 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002563_01290.