Species | Schleiferilactobacillus harbinensis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Schleiferilactobacillus; Schleiferilactobacillus harbinensis | |||||||||||
CAZyme ID | MGYG000002774_01959 | |||||||||||
CAZy Family | GH38 | |||||||||||
CAZyme Description | Mannosylglycerate hydrolase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 106809; End: 109469 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH38 | 5 | 274 | 4e-65 | 0.9479553903345725 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
COG0383 | AMS1 | 0.0 | 1 | 886 | 1 | 942 | Alpha-mannosidase [Carbohydrate transport and metabolism]. |
cd10814 | GH38N_AMII_SpGH38_like | 6.01e-156 | 5 | 287 | 1 | 271 | N-terminal catalytic domain of SPGH38, a putative alpha-mannosidase of Streptococcus pyogenes, and its prokaryotic homologs; glycoside hydrolase family 38 (GH38). The subfamily is represented by SpGH38 of Streptococcus pyogenes, which has been assigned as a putative alpha-mannosidase, and is encoded by ORF spy1604. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. A divalent metal ion, such as a zinc ion, is required for its activity. SpGH38 is inhibited by swainsonine. The absence of any secretion signal peptide suggests that SpGH38 may be intracellular. |
PRK09819 | PRK09819 | 1.20e-123 | 1 | 884 | 1 | 875 | mannosylglycerate hydrolase. |
cd10790 | GH38N_AMII_1 | 2.57e-107 | 5 | 287 | 1 | 273 | N-terminal catalytic domain of putative prokaryotic class II alpha-mannosidases; glycoside hydrolase family 38 (GH38). This mainly bacterial subfamily corresponds to a group of putative class II alpha-mannosidases, including various proteins assigned as alpha-mannosidases, Streptococcus pyogenes (SpGH38) encoded by ORF spy1604. Escherichia coli MngB encoded by the mngB/ybgG gene, and Thermotoga maritime TMM, and similar proteins. SpGH38 targets alpha-1,3 mannosidic linkages. SpGH38 appears to exist as an elongated dimer and display alpha-1,3 mannosidase activity. It is active on disaccharides and some aryl glycosides. SpGH38 can also effectively deglycosylate human N-glycans in vitro. MngB exhibits alpha-mannosidase activity that catalyzes the conversion of 2-O-(6-phospho-alpha-mannosyl)-D-glycerate to mannose-6-phosphate and glycerate in the pathway which enables use of mannosyl-D-glycerate as a sole carbon source. TMM is a homodimeric enzyme that hydrolyzes p-nitrophenyl-alpha-D-mannopyranoside, alpha -1,2-mannobiose, alpha -1,3-mannobiose, alpha -1,4-mannobiose, and alpha -1,6-mannobiose. The GH38 family contains retaining glycosyl hydrolases that employ a two-step mechanism involving the formation of a covalent glycosyl enzyme complex. Two carboxylic acids positioned within the active site act in concert: one as a catalytic nucleophile and the other as a general acid/base catalyst. Divalent metal ions, such as zinc or cobalt ions, are suggested to be required for the catalytic activities of typical class II alpha-mannosidases. However, TMM requires the cobalt or cadmium for its activity. The cadmium ion dependency is unique to TMM. Moreover, TMM is inhibited by swainsonine but not 1-deoxymannojirimycin, which is in agreement with the features of cytosolic alpha-mannosidase. |
cd10815 | GH38N_AMII_EcMngB_like | 2.07e-83 | 5 | 285 | 1 | 268 | N-terminal catalytic domain of Escherichia coli alpha-mannosidase MngB and its bacterial homologs; glycoside hydrolase family 38 (GH38). The bacterial subfamily is represented by Escherichia coli alpha-mannosidase MngB, which is encoded by the mngB gene (previously called ybgG). MngB exhibits alpha-mannosidase activity that converts 2-O-(6-phospho-alpha-mannosyl)-D-glycerate to mannose-6-phosphate and glycerate in the pathway which enables use of mannosyl-D-glycerate as a sole carbon source. A divalent metal ion is required for its activity. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QFR24497.1 | 0.0 | 1 | 886 | 1 | 886 |
QFR62945.1 | 0.0 | 1 | 886 | 1 | 886 |
QEU47412.1 | 0.0 | 1 | 886 | 1 | 886 |
QKX74565.1 | 0.0 | 3 | 886 | 2 | 893 |
QKX67025.1 | 0.0 | 3 | 886 | 2 | 893 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
5KBP_A | 6.96e-294 | 1 | 885 | 4 | 899 | Thecrystal structure of an alpha-mannosidase from Enterococcus faecalis V583 [Enterococcus faecalis V583],5KBP_B The crystal structure of an alpha-mannosidase from Enterococcus faecalis V583 [Enterococcus faecalis V583] |
2WYH_A | 1.57e-293 | 1 | 885 | 23 | 922 | Structureof the Streptococcus pyogenes family GH38 alpha-mannosidase [Streptococcus pyogenes M1 GAS],2WYH_B Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase [Streptococcus pyogenes M1 GAS],2WYI_A Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase complexed with swainsonine [Streptococcus pyogenes M1 GAS],2WYI_B Structure of the Streptococcus pyogenes family GH38 alpha-mannosidase complexed with swainsonine [Streptococcus pyogenes M1 GAS] |
3LVT_A | 1.00e-285 | 2 | 885 | 5 | 899 | TheCrystal Structure of a Protein in the Glycosyl Hydrolase Family 38 from Enterococcus faecalis to 2.55A [Enterococcus faecalis V583] |
6LZ1_A | 5.32e-07 | 3 | 143 | 280 | 420 | Structureof S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-],6LZ1_B Structure of S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-],6LZ1_C Structure of S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-],6LZ1_D Structure of S.pombe alpha-mannosidase Ams1 [Schizosaccharomyces pombe 972h-] |
7DD9_A | 5.68e-07 | 3 | 143 | 280 | 420 | ChainA, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct],7DD9_C Chain C, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct],7DD9_E Chain E, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct],7DD9_G Chain G, Alpha-mannosidase,ZZ-type zinc finger-containing protein P35G2.11c,Maltose/maltodextrin-binding periplasmic protein [synthetic construct] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q9KER1 | 2.78e-199 | 3 | 883 | 2 | 895 | Putative mannosylglycerate hydrolase OS=Alkalihalobacillus halodurans (strain ATCC BAA-125 / DSM 18197 / FERM 7344 / JCM 9153 / C-125) OX=272558 GN=mngB PE=3 SV=2 |
P54746 | 5.95e-73 | 2 | 770 | 3 | 748 | Mannosylglycerate hydrolase OS=Escherichia coli (strain K12) OX=83333 GN=mngB PE=1 SV=2 |
Q9UT61 | 2.88e-06 | 3 | 143 | 280 | 420 | Alpha-mannosidase OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=ams1 PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000039 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.