Species | CAG-485 sp900550645 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Muribaculaceae; CAG-485; CAG-485 sp900550645 | |||||||||||
CAZyme ID | MGYG000002920_00636 | |||||||||||
CAZy Family | GT2 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 243; End: 950 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT2 | 3 | 126 | 1.8e-28 | 0.7529411764705882 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd04196 | GT_2_like_d | 4.81e-79 | 3 | 201 | 1 | 207 | Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. |
pfam00535 | Glycos_transf_2 | 2.18e-29 | 3 | 158 | 1 | 164 | Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. |
cd00761 | Glyco_tranf_GTA_type | 2.76e-26 | 4 | 106 | 1 | 105 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. |
COG0463 | WcaA | 3.52e-25 | 3 | 172 | 6 | 175 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
cd06423 | CESA_like | 6.55e-19 | 6 | 161 | 3 | 169 | CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QLK83838.1 | 2.27e-63 | 1 | 231 | 1 | 230 |
QCQ50453.1 | 2.27e-63 | 1 | 231 | 1 | 230 |
AUI46753.1 | 2.27e-63 | 1 | 231 | 1 | 230 |
QCQ46458.1 | 2.27e-63 | 1 | 231 | 1 | 230 |
QCQ33209.1 | 9.15e-63 | 1 | 231 | 1 | 230 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6P61_A | 1.08e-08 | 3 | 89 | 16 | 103 | Structureof a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_B Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_C Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_D Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197] |
5HEA_A | 1.69e-08 | 1 | 89 | 6 | 95 | CgTstructure in hexamer [Streptococcus parasanguinis FW213],5HEA_B CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEA_C CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEC_A CgT structure in dimer [Streptococcus parasanguinis FW213],5HEC_B CgT structure in dimer [Streptococcus parasanguinis FW213] |
1H7L_A | 8.39e-08 | 3 | 106 | 4 | 116 | dTDP-MAGNESIUMCOMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1H7Q_A dTDP-MANGANESE COMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1QG8_A Native (Magnesium-Containing) Spsa From Bacillus Subtilis [Bacillus subtilis],1QGQ_A Udp-manganese Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis],1QGS_A Udp-Magnesium Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P22639 | 3.24e-12 | 3 | 210 | 4 | 221 | Uncharacterized glycosyltransferase alr2836 OS=Nostoc sp. (strain PCC 7120 / SAG 25.82 / UTEX 2576) OX=103690 GN=alr2836 PE=3 SV=2 |
B5L3F2 | 7.94e-11 | 1 | 186 | 5 | 193 | UDP-Glc:alpha-D-GlcNAc-diphosphoundecaprenol beta-1,3-glucosyltransferase WfgD OS=Escherichia coli OX=562 GN=wfgD PE=1 SV=1 |
P64864 | 3.57e-10 | 3 | 200 | 2 | 204 | Uncharacterized protein Mb1547 OS=Mycobacterium bovis (strain ATCC BAA-935 / AF2122/97) OX=233413 GN=BQ2027_MB1547 PE=4 SV=1 |
P9WLV4 | 3.57e-10 | 3 | 200 | 2 | 204 | Uncharacterized protein MT1570 OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT1570 PE=4 SV=1 |
P9WLV5 | 3.57e-10 | 3 | 200 | 2 | 204 | Uncharacterized protein Rv1520 OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv1520 PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000045 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.