logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003056_01752

You are here: Home > Sequence: MGYG000003056_01752

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Fusobacterium_A sp900543175
Lineage Bacteria; Fusobacteriota; Fusobacteriia; Fusobacteriales; Fusobacteriaceae; Fusobacterium_A; Fusobacterium_A sp900543175
CAZyme ID MGYG000003056_01752
CAZy Family GH32
CAZyme Description Sucrose-6-phosphate hydrolase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
458 MGYG000003056_110|CGC1 53736.05 6.0011
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003056 2294801 MAG United States North America
Gene Location Start: 5691;  End: 7067  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003056_01752.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 8 310 2.9e-105 0.9931740614334471

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
TIGR01322 scrB_fam 4.39e-143 4 431 14 440
sucrose-6-phosphate hydrolase. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
COG1621 SacC 1.74e-137 4 457 29 481
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
cd08996 GH32_FFase 5.11e-130 14 302 1 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18623 GH32_ScrB-like 5.71e-128 15 304 2 289
glycoside hydrolase family 32 sucrose 6 phosphate hydrolase (sucrase). Glycosyl hydrolase family GH32 subgroup contains sucrose-6-phosphate hydrolase (sucrase, EC:3.2.1.26) among others. The enzyme cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
smart00640 Glyco_32 1.03e-124 8 425 1 437
Glycosyl hydrolases family 32.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AVQ19330.1 0.0 1 458 1 458
AWD63555.1 9.41e-106 7 450 35 483
QFY74357.1 9.41e-106 7 450 35 483
QIZ06176.1 3.04e-105 7 457 31 485
QCQ04866.1 3.19e-105 7 456 16 456

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7BWB_A 1.29e-82 4 433 49 459
Bombyxmori GH32 beta-fructofuranosidase BmSUC1 [Bombyx mori]
7BWC_A 1.98e-81 4 433 49 459
Bombyxmori GH32 beta-fructofuranosidase BmSUC1 mutant D63A in complex with sucrose [Bombyx mori]
7VCO_A 4.91e-79 5 456 27 480
ChainA, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara]
1UYP_A 1.47e-71 4 458 3 429
Thethree-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_B The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_C The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_D The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_E The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_F The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8]
1W2T_A 4.08e-71 4 458 3 429
beta-fructosidasefrom Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_B beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_C beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_D beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_E beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_F beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P40714 1.46e-81 5 433 26 448
Sucrose-6-phosphate hydrolase OS=Escherichia coli OX=562 GN=cscA PE=3 SV=1
F8DVG5 7.95e-80 5 426 30 460
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 10988 / DSM 424 / LMG 404 / NCIMB 8938 / NRRL B-806 / ZM1) OX=555217 GN=sacA PE=3 SV=1
P0DJA7 2.21e-79 5 426 30 460
Sucrose-6-phosphate hydrolase OS=Zymomonas mobilis subsp. mobilis (strain ATCC 31821 / ZM4 / CP4) OX=264203 GN=sacA PE=1 SV=1
P07819 3.65e-79 4 431 29 450
Sucrose-6-phosphate hydrolase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacA PE=3 SV=2
P16553 3.04e-72 5 433 25 447
Raffinose invertase OS=Escherichia coli OX=562 GN=rafD PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000066 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003056_01752.