logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003064_01476

You are here: Home > Sequence: MGYG000003064_01476

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bacteroides graminisolvens
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides; Bacteroides graminisolvens
CAZyme ID MGYG000003064_01476
CAZy Family GH31
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
839 MGYG000003064_4|CGC5 95981.45 8.2933
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003064 3410784 MAG United States North America
Gene Location Start: 355382;  End: 357901  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003064_01476.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH31 258 728 1.1e-122 0.9976580796252927

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd06591 GH31_xylosidase_XylS 9.04e-160 278 611 1 322
xylosidase XylS-like. XylS is a glycosyl hydrolase family 31 (GH31) alpha-xylosidase found in prokaryotes, eukaryotes, and archaea, that catalyzes the release of alpha-xylose from the non-reducing terminal side of the alpha-xyloside substrate. XylS has been characterized in Sulfolobus solfataricus where it hydrolyzes isoprimeverose, the p-nitrophenyl-beta derivative of isoprimeverose, and xyloglucan oligosaccharides, and has transxylosidic activity. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. The XylS family corresponds to subgroup 3 in the Ernst et al classification of GH31 enzymes.
pfam01055 Glyco_hydro_31 3.50e-149 259 728 1 442
Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases.
COG1501 YicI 6.80e-135 181 819 147 762
Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism].
cd06603 GH31_GANC_GANAB_alpha 5.17e-55 278 730 1 428
neutral alpha-glucosidase C, neutral alpha-glucosidase AB. This subgroup includes the closely related glycosyl hydrolase family 31 (GH31) isozymes, neutral alpha-glucosidase C (GANC) and the alpha subunit of heterodimeric neutral alpha-glucosidase AB (GANAB). Initially distinguished on the basis of differences in electrophoretic mobility in starch gel, GANC and GANAB have been shown to have other differences, including those of substrate specificity. GANC and GANAB are key enzymes in glycogen metabolism that hydrolyze terminal, non-reducing 1,4-linked alpha-D-glucose residues from glycogen in the endoplasmic reticulum. The GANC/GANAB family includes the alpha-glucosidase II (ModA) from Dictyostelium discoideum as well as the alpha-glucosidase II (GLS2, or ROT2 - Reversal of TOR2 lethality protein 2) from Saccharomyces cerevisiae.
cd06589 GH31 2.13e-51 278 608 1 265
glycosyl hydrolase family 31 (GH31). GH31 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite -1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QNL40586.1 0.0 28 839 30 842
QGT73061.1 0.0 28 839 11 823
QDM12716.1 0.0 20 839 3 823
QUT78610.1 0.0 20 839 27 847
QUT72608.1 0.0 6 839 7 841

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5JOU_A 3.20e-153 251 839 370 955
Bacteroidesovatus Xyloglucan PUL GH31 [Bacteroides ovatus],5JOV_A Bacteroides ovatus Xyloglucan PUL GH31 with bound 5FIdoF [Bacteroides ovatus]
2XVG_A 1.37e-139 251 838 398 985
crystalstructure of alpha-xylosidase (GH31) from Cellvibrio japonicus [Cellvibrio japonicus],2XVK_A crystal structure of alpha-xylosidase (GH31) from Cellvibrio japonicus in complex with 5-fluoro-alpha-D-xylopyranosyl fluoride [Cellvibrio japonicus],2XVL_A crystal structure of alpha-xylosidase (GH31) from Cellvibrio japonicus in complex with Pentaerythritol propoxylate (5 4 PO OH) [Cellvibrio japonicus]
7KMP_A 3.29e-134 251 837 401 975
ChainA, Alpha-xylosidase [Xanthomonas citri pv. citri str. 306],7KNC_A Chain A, Alpha-xylosidase [Xanthomonas citri pv. citri str. 306]
6DRU_A 9.26e-62 172 721 132 704
Xylosidasefrom Aspergillus niger [Aspergillus niger],6DRU_B Xylosidase from Aspergillus niger [Aspergillus niger]
6JR8_A 3.41e-61 218 771 196 734
Flavobacteriumjohnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_B Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_C Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_D Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
A7LXT0 1.71e-152 251 839 369 954
Alpha-xylosidase BoGH31A OS=Bacteroides ovatus (strain ATCC 8483 / DSM 1896 / JCM 5824 / BCRC 10623 / CCUG 4943 / NCTC 11153) OX=411476 GN=BACOVA_02646 PE=1 SV=1
Q9P999 1.89e-139 49 834 8 724
Alpha-xylosidase OS=Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) OX=273057 GN=xylS PE=1 SV=1
A2QTU5 6.67e-61 172 721 150 722
Alpha-xylosidase A OS=Aspergillus niger (strain CBS 513.88 / FGSC A1513) OX=425011 GN=axlA PE=1 SV=1
Q01336 3.02e-59 91 588 59 528
Uncharacterized family 31 glucosidase ORF2 (Fragment) OS=Pseudescherichia vulneris OX=566 PE=3 SV=1
Q9F234 7.99e-52 47 797 45 745
Alpha-glucosidase 2 OS=Bacillus thermoamyloliquefaciens OX=1425 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.049265 0.942114 0.007782 0.000349 0.000231 0.000238

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003064_01476.