Species | Paenibacillus amylolyticus | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes; Bacilli; Paenibacillales; Paenibacillaceae; Paenibacillus; Paenibacillus amylolyticus | |||||||||||
CAZyme ID | MGYG000003072_00857 | |||||||||||
CAZy Family | GT2 | |||||||||||
CAZyme Description | Gramicidin S synthase 2 | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 199236; End: 210293 Strand: - |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd17655 | A_NRPS_Bac | 0.0 | 1533 | 2012 | 1 | 490 | bacitracin synthetase and related proteins. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes bacitracin synthetases 1, 2, and 3 (BA1, also known as ATP-dependent cysteine adenylase or cysteine activase, BA2, also known as ATP-dependent lysine adenylase or lysine activase, and BA3, also known as ATP-dependent isoleucine adenylase or isoleucine activase) in Bacilli. Bacitracin is a mixture of related cyclic peptides used as a polypeptide antibiotic. This family also includes gramicidin synthetase 1 involved in synthesis of the cyclic peptide antibiotic gramicidin S via activation of phenylalanine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. |
cd17655 | A_NRPS_Bac | 0.0 | 2565 | 3051 | 1 | 490 | bacitracin synthetase and related proteins. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes bacitracin synthetases 1, 2, and 3 (BA1, also known as ATP-dependent cysteine adenylase or cysteine activase, BA2, also known as ATP-dependent lysine adenylase or lysine activase, and BA3, also known as ATP-dependent isoleucine adenylase or isoleucine activase) in Bacilli. Bacitracin is a mixture of related cyclic peptides used as a polypeptide antibiotic. This family also includes gramicidin synthetase 1 involved in synthesis of the cyclic peptide antibiotic gramicidin S via activation of phenylalanine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. |
cd17651 | A_NRPS_VisG_like | 0.0 | 1535 | 2009 | 1 | 491 | similar to adenylation domain of virginiamycin S synthetase. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes virginiamycin S synthetase (VisG) in Streptomyces virginiae; VisG is involved in virginiamycin S (VS) biosynthesis as the provider of an L-pheGly molecule, a highly specific substrate for the last condensation step by VisF. This family also includes linear gramicidin synthetase B (LgrB) in Brevibacillus brevis. Substrate specificity analysis using residues of the substrate-binding pockets of all 16 adenylation domains has shown good agreement of the substrate amino acids predicted with the sequence of linear gramicidin. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions. |
PRK12467 | PRK12467 | 0.0 | 2087 | 3132 | 25 | 1098 | peptide synthase; Provisional |
PRK12467 | PRK12467 | 0.0 | 9 | 1144 | 2643 | 3714 | peptide synthase; Provisional |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QND46664.1 | 0.0 | 556 | 3106 | 1 | 2636 |
BAY30132.1 | 5.37e-291 | 196 | 3129 | 313 | 3292 |
BAY90071.1 | 1.68e-287 | 196 | 3128 | 312 | 3280 |
BAZ00088.1 | 5.52e-286 | 196 | 3129 | 313 | 3290 |
BAZ75991.1 | 5.52e-286 | 196 | 3129 | 313 | 3290 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6MFZ_A | 0.0 | 1528 | 3139 | 204 | 1806 | Crystalstructure of dimodular LgrA in a condensation state [Brevibacillus parabrevis],6MFZ_B Crystal structure of dimodular LgrA in a condensation state [Brevibacillus parabrevis] |
6MFY_A | 0.0 | 1528 | 3058 | 204 | 1723 | Crystalstructure of a 5-domain construct of LgrA in the substrate donation state [Brevibacillus parabrevis],6MG0_A Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis],6MG0_B Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis] |
2VSQ_A | 6.16e-237 | 1 | 1054 | 1 | 1037 | Structureof surfactin A synthetase C (SrfA-C), a nonribosomal peptide synthetase termination module [Bacillus subtilis] |
6MFW_A | 1.09e-218 | 1528 | 2518 | 204 | 1180 | Crystalstructure of a 4-domain construct of LgrA in the substrate donation state [Brevibacillus parabrevis] |
6MFX_A | 1.27e-217 | 1528 | 2518 | 204 | 1180 | Crystalstructure of a 4-domain construct of a mutant of LgrA in the substrate donation state [Brevibacillus parabrevis] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P39847 | 0.0 | 9 | 2380 | 7 | 2363 | Plipastatin synthase subunit C OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsC PE=1 SV=2 |
Q04747 | 0.0 | 5 | 3134 | 2 | 3107 | Surfactin synthase subunit 2 OS=Bacillus subtilis (strain 168) OX=224308 GN=srfAB PE=1 SV=3 |
P94459 | 0.0 | 8 | 3140 | 6 | 3113 | Plipastatin synthase subunit D OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsD PE=1 SV=2 |
P45745 | 0.0 | 1076 | 3128 | 9 | 2104 | Dimodular nonribosomal peptide synthase OS=Bacillus subtilis (strain 168) OX=224308 GN=dhbF PE=1 SV=4 |
Q70LM4 | 0.0 | 13 | 3127 | 8 | 3611 | Linear gramicidin synthase subunit D OS=Brevibacillus parabrevis OX=54914 GN=lgrD PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
0.999978 | 0.000061 | 0.000005 | 0.000000 | 0.000000 | 0.000001 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.