logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003074_01828

You are here: Home > Sequence: MGYG000003074_01828

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Clostridium_Q sp000435655
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Clostridium_Q; Clostridium_Q sp000435655
CAZyme ID MGYG000003074_01828
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
345 MGYG000003074_88|CGC1 39046.9 7.5899
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003074 2527682 MAG China Asia
Gene Location Start: 285;  End: 1322  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003074_01828.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 202 336 7.3e-26 0.8625

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 1.24e-56 6 338 1 330
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 1.36e-39 6 340 2 341
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03820 GT4_AmsD-like 4.66e-37 15 335 9 316
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran.
cd03809 GT4_MtfB-like 8.63e-36 6 336 1 328
glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide.
cd03811 GT4_GT28_WabH-like 1.07e-32 19 337 12 324
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QCS46874.1 2.53e-198 1 338 1 336
QHM64245.1 3.59e-198 1 338 1 336
AMK55396.1 6.80e-194 1 338 1 338
QCU04015.1 9.04e-193 9 335 1 328
QRT49763.1 1.05e-181 1 338 1 336

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5D00_A 6.26e-08 19 318 17 315
Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168]
5N7Z_A 2.50e-07 151 308 131 288
glycosyltransferasein LPS biosynthesis [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2],6Y6G_A Chain A, Lipopolysaccharide 1,6-galactosyltransferase [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]
5N80_A 2.51e-07 151 308 132 289
glycosyltransferaseLPS biosynthesis in complex with UDP [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]
6Y6I_A 2.51e-07 151 308 133 290
ChainA, Lipopolysaccharide 1,6-galactosyltransferase [Salmonella enterica subsp. enterica serovar Typhimurium str. LT2]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
D4GU62 1.28e-14 155 324 166 341
Low-salt glycan biosynthesis hexosyltransferase Agl9 OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=agl9 PE=3 SV=1
Q59002 6.84e-14 19 315 16 321
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
P54490 4.99e-12 95 337 71 321
Uncharacterized glycosyltransferase YqgM OS=Bacillus subtilis (strain 168) OX=224308 GN=yqgM PE=3 SV=2
Q65CC7 2.53e-10 99 318 88 324
Alpha-D-kanosaminyltransferase OS=Streptomyces kanamyceticus OX=1967 GN=kanE PE=1 SV=1
P9WMZ1 3.40e-10 78 318 63 319
Alpha-maltose-1-phosphate synthase OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=glgM PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000054 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003074_01828.