logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003138_00777

You are here: Home > Sequence: MGYG000003138_00777

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Streptococcus pseudopneumoniae_O
Lineage Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus; Streptococcus pseudopneumoniae_O
CAZyme ID MGYG000003138_00777
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
503 MGYG000003138_5|CGC2 57874.23 4.7342
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003138 1796209 MAG United States North America
Gene Location Start: 76327;  End: 77838  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.-

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 319 458 9.2e-26 0.8875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
TIGR02918 TIGR02918 0.0 1 500 1 500
accessory Sec system glycosylation protein GtfA. Members of this protein family are found only in Gram-positive bacteria of the Firmicutes lineage, including several species of Staphylococcus, Streptococcus, and Lactobacillus. Members are associated with glycosylation of serine-rich glycoproteins exported by the accessory Sec system. [Protein fate, Protein modification and repair]
cd04949 GT4_GtfA-like 3.85e-122 183 493 27 328
accessory Sec system glycosyltransferase GtfA and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases and is named after gtfA in Streptococcus gordonii, where it plays a role in the O-linked glycosylation of GspB, a cell surface glycoprotein involved in platelet binding. In general glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in bacteria.
cd03820 GT4_AmsD-like 2.11e-30 165 495 37 351
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran.
cd03801 GT4_PimA-like 5.92e-26 165 493 35 361
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 7.21e-25 186 503 57 380
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QQQ35015.1 0.0 1 503 1 503
QBZ14019.1 0.0 1 503 1 503
CBJ22888.1 0.0 1 503 1 503
AMH89203.1 0.0 1 503 1 503
BCJ11229.1 0.0 1 503 1 503

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4PQG_A 0.0 1 503 9 511
Crystalstructure of the pneumococcal O-GlcNAc transferase GtfA in complex with UDP and GlcNAc [Streptococcus pneumoniae TIGR4],4PQG_B Crystal structure of the pneumococcal O-GlcNAc transferase GtfA in complex with UDP and GlcNAc [Streptococcus pneumoniae TIGR4]
5E9T_A 2.04e-238 2 503 2 503
Crystalstructure of GtfA/B complex [Streptococcus gordonii],5E9T_C Crystal structure of GtfA/B complex [Streptococcus gordonii],5E9U_A Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_C Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_E Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_G Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii]
7EC2_A 3.59e-28 15 494 15 487
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC2_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
7EC1_A 3.42e-26 4 454 4 458
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC1_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC4_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC4_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC6_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC6_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFK_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFK_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFM_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFM_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFN_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFN_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
7EC3_A 3.42e-26 4 454 4 458
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC3_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFL_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFL_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
A0A0H2URG7 0.0 1 503 1 503
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=gtfA PE=1 SV=1
Q9AET5 1.39e-241 1 503 1 503
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus gordonii OX=1302 GN=gtfA PE=1 SV=2
Q3S2Y2 8.80e-192 1 503 1 503
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus agalactiae OX=1311 GN=gtfA PE=1 SV=1
A1C3L9 2.34e-191 1 503 1 504
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus parasanguinis OX=1318 GN=gtfA PE=1 SV=1
A0A0S4NM89 1.50e-153 1 502 1 511
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Limosilactobacillus reuteri (strain ATCC 53608) OX=927703 GN=gtfA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000027 0.000019 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003138_00777.