logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003138_01678

You are here: Home > Sequence: MGYG000003138_01678

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Streptococcus pseudopneumoniae_O
Lineage Bacteria; Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus; Streptococcus pseudopneumoniae_O
CAZyme ID MGYG000003138_01678
CAZy Family GH13
CAZyme Description Alpha-amylase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
484 MGYG000003138_26|CGC1 55930.89 4.2714
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003138 1796209 MAG United States North America
Gene Location Start: 13315;  End: 14769  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 30 372 2.4e-147 0.9970760233918129

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
PRK09441 PRK09441 0.0 1 480 1 479
cytoplasmic alpha-amylase; Reviewed
cd11318 AmyAc_bac_fung_AmyA 0.0 3 394 1 391
Alpha amylase catalytic domain found in bacterial and fungal Alpha amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes bacterial and fungal proteins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11314 AmyAc_arch_bac_plant_AmyA 1.33e-45 6 396 2 295
Alpha amylase catalytic domain found in archaeal, bacterial, and plant Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes AmyA from bacteria, archaea, water fleas, and plants. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
COG0366 AmyA 4.05e-25 30 479 37 442
Glycosidase [Carbohydrate transport and metabolism].
smart00642 Aamy 1.08e-21 4 107 1 97
Alpha-amylase domain.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QBZ13217.1 0.0 1 484 1 484
BBP09419.1 0.0 1 484 1 484
QQQ36013.1 0.0 1 484 1 484
QBZ11472.1 0.0 1 484 1 484
QGS42013.1 0.0 1 484 1 484

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1HVX_A 1.02e-175 3 479 5 480
BACILLUSSTEAROTHERMOPHILUS ALPHA-AMYLASE [Geobacillus stearothermophilus]
4UZU_A 3.13e-174 3 479 5 478
Three-dimensionalstructure of a variant `Termamyl-like' Geobacillus stearothermophilus alpha-amylase at 1.9 A resolution [Geobacillus stearothermophilus]
6AG0_A 2.36e-173 3 479 32 507
TheX-ray Crystallographic Structure of Maltooligosaccharide-forming Amylase from Bacillus stearothermophilus STB04 [Geobacillus stearothermophilus],6AG0_C The X-ray Crystallographic Structure of Maltooligosaccharide-forming Amylase from Bacillus stearothermophilus STB04 [Geobacillus stearothermophilus]
1WP6_A 6.41e-172 3 479 6 482
Crystalstructure of maltohexaose-producing amylase from alkalophilic Bacillus sp.707. [Bacillus sp. 707],1WPC_A Crystal structure of maltohexaose-producing amylase complexed with pseudo-maltononaose [Bacillus sp. 707],2D3L_A Crystal structure of maltohexaose-producing amylase from Bacillus sp.707 complexed with maltopentaose. [Bacillus sp. 707],2D3N_A Crystal structure of maltohexaose-producing amylase from Bacillus sp.707 complexed with maltohexaose [Bacillus sp. 707]
1W9X_A 1.59e-171 3 479 2 478
ChainA, Alpha Amylase [Sutcliffiella halmapala]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P06279 7.66e-176 3 479 39 514
Alpha-amylase OS=Geobacillus stearothermophilus OX=1422 GN=amyS PE=1 SV=3
P19571 1.08e-170 3 479 39 515
Glucan 1,4-alpha-maltohexaosidase OS=Bacillus sp. (strain 707) OX=1416 PE=1 SV=1
P06278 4.33e-166 3 479 33 509
Alpha-amylase OS=Bacillus licheniformis OX=1402 GN=amyS PE=1 SV=1
P00692 6.07e-164 3 479 33 511
Alpha-amylase OS=Bacillus amyloliquefaciens OX=1390 PE=1 SV=1
P26613 4.48e-135 1 484 1 494
Cytoplasmic alpha-amylase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=amyA PE=3 SV=3

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000045 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003138_01678.