logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003208_03457

You are here: Home > Sequence: MGYG000003208_03457

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Pseudomonas_E extremaustralis
Lineage Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae; Pseudomonas_E; Pseudomonas_E extremaustralis
CAZyme ID MGYG000003208_03457
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
504 MGYG000003208_62|CGC1 56255.09 5.1508
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003208 6254364 MAG United States North America
Gene Location Start: 12713;  End: 14227  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003208_03457.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 316 469 1.5e-24 0.9

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
NF038011 PelF 0.0 11 497 1 489
GT4 family glycosyltransferase PelF. Proteins of this family are components of the exopolysaccharide Pel transporter. It has been reported that PelF is a soluble glycosyltransferase that uses UDP-glucose as the substrate for the synthesis of exopolysaccharide Pel, whereas PelG is a Wzx-like and PST family exopolysaccharide transporter.
cd03813 GT4-like 0.0 11 497 1 473
glycosyltransferase family 4 proteins. This family is most closely related to the GT4 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria, while some of them are also found in Archaea and eukaryotes.
pfam11997 DUF3492 9.74e-108 10 288 1 278
Domain of unknown function (DUF3492). This presumed domain is functionally uncharacterized. This domain is found in bacteria, archaea and eukaryotes. This domain is typically between 259 to 282 amino acids in length. This domain is found associated with pfam00534. This domain has two conserved sequence motifs: GGVS and EHGIY.
cd03801 GT4_PimA-like 7.26e-40 179 498 82 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 6.28e-37 183 504 89 381
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
SDF91447.1 0.0 1 504 1 504
QXH84364.1 0.0 1 504 1 504
AKS06975.1 0.0 1 504 1 504
ASV36134.1 0.0 1 504 1 504
SDO46969.1 0.0 1 504 1 504

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4N9W_A 5.66e-08 247 483 126 351
Crystalstructure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_A Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_B Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_C Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155],4NC9_D Crystal structure of phosphatidyl mannosyltransferase PimA [Mycolicibacterium smegmatis MC2 155]
2GEJ_A 5.92e-08 247 483 142 367
CrystalStructure of phosphatidylinositol mannosyltransferase (PimA) from Mycobacterium smegmatis in complex with GDP-Man [Mycolicibacterium smegmatis MC2 155],2GEK_A Crystal Structure of phosphatidylinositol mannosyltransferase (PimA) from Mycobacterium smegmatis in complex with GDP [Mycolicibacterium smegmatis MC2 155]
5D00_A 2.86e-06 326 502 213 377
Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
C0ZUT0 3.06e-10 169 433 98 352
D-inositol 3-phosphate glycosyltransferase OS=Rhodococcus erythropolis (strain PR4 / NBRC 100887) OX=234621 GN=mshA PE=3 SV=1
Q9R9N2 6.59e-10 292 484 138 333
Lipopolysaccharide core biosynthesis mannosyltransferase LpsB OS=Rhizobium meliloti (strain 1021) OX=266834 GN=lpsB PE=3 SV=1
Q0SF06 9.75e-10 169 433 108 362
D-inositol 3-phosphate glycosyltransferase OS=Rhodococcus jostii (strain RHA1) OX=101510 GN=mshA PE=3 SV=1
D5UJ42 1.26e-09 168 502 126 441
D-inositol 3-phosphate glycosyltransferase OS=Cellulomonas flavigena (strain ATCC 482 / DSM 20109 / BCRC 11376 / JCM 18109 / NBRC 3775 / NCIMB 8073 / NRS 134) OX=446466 GN=mshA PE=3 SV=1
C7QKE8 1.60e-09 191 496 119 423
D-inositol 3-phosphate glycosyltransferase 2 OS=Catenulispora acidiphila (strain DSM 44928 / JCM 14897 / NBRC 102108 / NRRL B-24433 / ID139908) OX=479433 GN=mshA2 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000011 0.000010 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003208_03457.