Species | Kluyvera ascorbata | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae; Kluyvera; Kluyvera ascorbata | |||||||||||
CAZyme ID | MGYG000003358_04091 | |||||||||||
CAZy Family | GT2 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 10021; End: 10767 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT2 | 4 | 133 | 1.8e-18 | 0.7588235294117647 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
PRK10063 | PRK10063 | 4.67e-166 | 1 | 248 | 1 | 248 | colanic acid biosynthesis glycosyltransferase WcaE. |
TIGR04009 | wcaE | 3.02e-165 | 1 | 248 | 1 | 248 | colanic acid biosynthesis glycosyl transferase WcaE. This gene is one of the glycosyl transferases involved in the biosynthesis of colanic acid, an exopolysaccharide expressed in Enterobacteraceae species. |
cd06433 | GT_2_WfgS_like | 7.96e-58 | 4 | 204 | 1 | 202 | WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. |
cd00761 | Glyco_tranf_GTA_type | 9.12e-17 | 20 | 161 | 13 | 152 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. |
pfam00535 | Glycos_transf_2 | 6.34e-16 | 4 | 158 | 1 | 160 | Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
BBV65256.1 | 4.68e-182 | 1 | 248 | 1 | 248 |
AUJ96572.1 | 3.81e-172 | 1 | 248 | 1 | 248 |
ASG63134.1 | 3.81e-172 | 1 | 248 | 1 | 248 |
QIR26832.1 | 3.81e-172 | 1 | 248 | 1 | 248 |
BBS96152.1 | 1.49e-169 | 1 | 248 | 1 | 248 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
2Z87_A | 3.45e-06 | 21 | 98 | 391 | 469 | Crystalstructure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli],2Z87_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli] |
2Z86_A | 3.46e-06 | 21 | 98 | 392 | 470 | Crystalstructure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_C Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_D Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P71239 | 1.29e-125 | 1 | 247 | 1 | 247 | Putative colanic acid biosynthesis glycosyl transferase WcaE OS=Escherichia coli (strain K12) OX=83333 GN=wcaE PE=4 SV=2 |
P9WMX8 | 3.71e-13 | 4 | 109 | 8 | 112 | Uncharacterized glycosyltransferase MT1564 OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT1564 PE=3 SV=1 |
P9WMX9 | 3.71e-13 | 4 | 109 | 8 | 112 | Uncharacterized glycosyltransferase Rv1514c OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv1514c PE=1 SV=1 |
A1KMV1 | 1.23e-12 | 23 | 203 | 23 | 208 | PGL/p-HBAD biosynthesis glycosyltransferase BCG_2978 OS=Mycobacterium bovis (strain BCG / Pasteur 1173P2) OX=410289 GN=BCG_2978 PE=3 SV=2 |
A5U6W5 | 1.23e-12 | 23 | 203 | 23 | 208 | PGL/p-HBAD biosynthesis glycosyltransferase MRA_2984 OS=Mycobacterium tuberculosis (strain ATCC 25177 / H37Ra) OX=419947 GN=MRA_2984 PE=3 SV=2 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000084 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.