logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003411_00700

You are here: Home > Sequence: MGYG000003411_00700

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-568 sp000434395
Lineage Bacteria; Firmicutes; Bacilli; RFN20; CAG-288; CAG-568; CAG-568 sp000434395
CAZyme ID MGYG000003411_00700
CAZy Family GH13
CAZyme Description 1,4-alpha-glucan branching enzyme GlgB
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
647 74570.63 5.2745
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003411 1362982 MAG Fiji Oceania
Gene Location Start: 172866;  End: 174809  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.18

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 173 460 1.8e-119 0.9933554817275747

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
COG0296 GlgB 0.0 12 607 17 626
1,4-alpha-glucan branching enzyme [Carbohydrate transport and metabolism].
PRK14705 PRK14705 0.0 11 607 613 1220
glycogen branching enzyme; Provisional
PRK12313 PRK12313 0.0 1 611 2 629
1,4-alpha-glucan branching protein GlgB.
TIGR01515 branching_enzym 0.0 11 607 7 617
alpha-1,4-glucan:alpha-1,4-glucan 6-glycosyltransferase. This model describes the glycogen branching enzymes which are responsible for the transfer of chains of approx. 7 alpha(1--4)-linked glucosyl residues to other similar chains (in new alpha(1--6) linkages) in the biosynthesis of glycogen. This enzyme is a member of the broader amylase family of starch hydrolases which fold as (beta/alpha)8 barrels, the so-called TIM-barrel structure. All of the sequences comprising the seed of this model have been experimentally characterized. This model encompasses both bacterial and eukaryotic species. No archaea have this enzyme, although Aquifex aolicus does. Two species, Bacillus thuringiensis and Clostridium perfringens have two sequences each which are annotated as amylases. These annotations are aparrently in error. GP|18143720 from C. perfringens, for instance, contains the note "674 aa, similar to gp:A14658_1 amylase (1,4-alpha-glucan branching enzyme (EC 2.4.1.18) ) from Bacillus thuringiensis (648 aa); 51.1% identity in 632 aa overlap." A branching enzyme from Porphyromonas gingivales, OMNI|PG1793, appears to be more closely related to the eukaryotic species (across a deep phylogenetic split) and may represent an instance of lateral transfer from this species' host. A sequence from Arabidopsis thaliana, GP|9294564, scores just above trusted, but appears either to contain corrupt sequence or, more likely, to be a pseudogene as some of the conserved catalytic residues common to the alpha amylase family are not conserved here. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
cd11322 AmyAc_Glg_BE 0.0 110 492 1 397
Alpha amylase catalytic domain found in the Glycogen branching enzyme (also called 1,4-alpha-glucan branching enzyme). The glycogen branching enzyme catalyzes the third step of glycogen biosynthesis by the cleavage of an alpha-(1,4)-glucosidic linkage and the formation a new alpha-(1,6)-branch by subsequent transfer of cleaved oligosaccharide. They are part of a group called branching enzymes which catalyze the formation of alpha-1,6 branch points in either glycogen or starch. This group includes proteins from bacteria, eukaryotes, and archaea. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QOS39154.1 5.66e-280 1 626 1 622
QNM12492.1 5.71e-204 8 609 8 607
BBH27653.1 7.31e-204 9 609 10 616
BBK63474.1 7.89e-201 1 619 1 617
BBK23779.1 9.01e-200 1 611 1 609

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6JOY_A 1.95e-163 4 607 2 616
TheX-ray Crystallographic Structure of Branching Enzyme from Rhodothermus obamensis STB05 [Rhodothermus marinus]
5GR2_A 9.07e-159 18 607 146 771
Crystalstructure of branching enzyme L541A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142],5GR4_A Crystal structure of branching enzyme L541A mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose [Crocosphaera subtropica ATCC 51142]
5GQW_A 1.81e-158 18 607 146 771
Crystalstructure of branching enzyme W610N mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142],5GQX_A Crystal structure of branching enzyme W610N mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose [Crocosphaera subtropica ATCC 51142]
5GR5_A 2.55e-158 18 607 146 771
Crystalstructure of branching enzyme W610A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]
5GQZ_A 5.07e-158 18 607 146 771
Crystalstructure of branching enzyme Y500A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q8RF62 1.01e-182 11 611 15 611
1,4-alpha-glucan branching enzyme GlgB OS=Fusobacterium nucleatum subsp. nucleatum (strain ATCC 25586 / DSM 15643 / BCRC 10681 / CIP 101130 / JCM 8532 / KCTC 2640 / LMG 13131 / VPI 4355) OX=190304 GN=glgB PE=3 SV=1
Q0SWZ1 1.12e-181 11 600 42 647
1,4-alpha-glucan branching enzyme GlgB 1 OS=Clostridium perfringens (strain SM101 / Type A) OX=289380 GN=glgB1 PE=3 SV=1
B0TZI5 4.78e-180 11 607 24 636
1,4-alpha-glucan branching enzyme GlgB OS=Francisella philomiragia subsp. philomiragia (strain ATCC 25017 / FSC 153 / O#319-036) OX=484022 GN=glgB PE=3 SV=1
Q8XPA2 5.07e-180 11 600 42 647
1,4-alpha-glucan branching enzyme GlgB 1 OS=Clostridium perfringens (strain 13 / Type A) OX=195102 GN=glgB1 PE=3 SV=1
P30537 5.03e-178 11 607 16 616
1,4-alpha-glucan branching enzyme GlgB OS=Bacillus caldolyticus OX=1394 GN=glgB PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000075 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003411_00700.