Species | Firm-11 sp004556545 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia_A; Christensenellales; CAG-74; Firm-11; Firm-11 sp004556545 | |||||||||||
CAZyme ID | MGYG000003417_00496 | |||||||||||
CAZy Family | GH31 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 17824; End: 19935 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH31 | 340 | 598 | 4e-47 | 0.6416861826697893 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
COG1501 | YicI | 2.66e-75 | 115 | 687 | 144 | 760 | Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism]. |
pfam01055 | Glyco_hydro_31 | 2.51e-64 | 200 | 598 | 1 | 442 | Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases. |
PRK10658 | PRK10658 | 5.78e-32 | 117 | 575 | 152 | 646 | putative alpha-glucosidase; Provisional |
cd06589 | GH31 | 1.38e-27 | 219 | 495 | 1 | 264 | glycosyl hydrolase family 31 (GH31). GH31 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite -1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively. |
cd14752 | GH31_N | 2.54e-27 | 112 | 219 | 8 | 122 | N-terminal domain of glycosyl hydrolase family 31 (GH31). This family is found N-terminal to the glycosyl-hydrolase domain of Glycoside hydrolase family 31 (GH31). GH31 includes the glycoside hydrolases alpha-glucosidase (EC 3.2.1.20), alpha-1,3-glucosidase (EC 3.2.1.84), alpha-xylosidase (EC 3.2.1.177), sucrase-isomaltase (EC 3.2.1.48 and EC 3.2.1.10), as well as alpha-glucan lyase (EC 4.2.2.13). All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite-1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues of the catalytic domain have been identified as the catalytic nucleophile and the acid/base, respectively. A loop of the N-terminal beta-sandwich domain is part of the active site pocket. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
SCM56493.1 | 8.89e-164 | 3 | 699 | 43 | 773 |
BBD44713.1 | 5.70e-159 | 3 | 688 | 44 | 763 |
QUT47628.1 | 2.13e-153 | 1 | 688 | 34 | 756 |
BCG53446.1 | 5.47e-153 | 2 | 682 | 35 | 747 |
QNK57634.1 | 1.45e-121 | 64 | 691 | 61 | 674 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6JR6_A | 1.25e-49 | 124 | 688 | 156 | 781 | Flavobacteriumjohnsoniae GH31 dextranase, FjDex31A [Flavobacterium johnsoniae UW101],6JR6_B Flavobacterium johnsoniae GH31 dextranase, FjDex31A [Flavobacterium johnsoniae UW101],6JR6_C Flavobacterium johnsoniae GH31 dextranase, FjDex31A [Flavobacterium johnsoniae UW101],6JR6_D Flavobacterium johnsoniae GH31 dextranase, FjDex31A [Flavobacterium johnsoniae UW101],6JR7_A Flavobacterium johnsoniae GH31 dextranase, FjDex31A, complexed with glucose [Flavobacterium johnsoniae UW101],6JR7_B Flavobacterium johnsoniae GH31 dextranase, FjDex31A, complexed with glucose [Flavobacterium johnsoniae UW101],6JR7_C Flavobacterium johnsoniae GH31 dextranase, FjDex31A, complexed with glucose [Flavobacterium johnsoniae UW101],6JR7_D Flavobacterium johnsoniae GH31 dextranase, FjDex31A, complexed with glucose [Flavobacterium johnsoniae UW101] |
6JR8_A | 7.60e-49 | 124 | 688 | 156 | 781 | Flavobacteriumjohnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_B Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_C Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101],6JR8_D Flavobacterium johnsoniae GH31 dextranase, FjDex31A, mutant D412A complexed with isomaltotriose [Flavobacterium johnsoniae UW101] |
4XPO_A | 2.83e-34 | 116 | 640 | 90 | 676 | Crystalstructure of a novel alpha-galactosidase from Pedobacter saltans [Pseudopedobacter saltans],4XPP_A Crystal structure of Pedobacter saltans GH31 alpha-galactosidase complexed with D-galactose [Pseudopedobacter saltans],4XPQ_A Crystal structure of Pedobacter saltans GH31 alpha-galactosidase complexed with L-fucose [Pseudopedobacter saltans] |
4XPR_A | 2.84e-33 | 116 | 640 | 90 | 676 | Crystalstructure of the mutant D365A of Pedobacter saltans GH31 alpha-galactosidase [Pseudopedobacter saltans],4XPS_A Crystal structure of the mutant D365A of Pedobacter saltans GH31 alpha-galactosidase complexed with p-nitrophenyl-alpha-galactopyranoside [Pseudopedobacter saltans] |
5JOU_A | 1.09e-31 | 196 | 680 | 374 | 924 | Bacteroidesovatus Xyloglucan PUL GH31 [Bacteroides ovatus],5JOV_A Bacteroides ovatus Xyloglucan PUL GH31 with bound 5FIdoF [Bacteroides ovatus] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
Q9P999 | 5.71e-46 | 118 | 678 | 106 | 702 | Alpha-xylosidase OS=Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) OX=273057 GN=xylS PE=1 SV=1 |
Q9F234 | 8.34e-37 | 124 | 640 | 147 | 717 | Alpha-glucosidase 2 OS=Bacillus thermoamyloliquefaciens OX=1425 PE=3 SV=1 |
Q5AW25 | 1.96e-34 | 47 | 599 | 97 | 697 | Alpha-xylosidase OS=Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) OX=227321 GN=agdD PE=1 SV=1 |
A7LXT0 | 5.98e-31 | 196 | 680 | 373 | 923 | Alpha-xylosidase BoGH31A OS=Bacteroides ovatus (strain ATCC 8483 / DSM 1896 / JCM 5824 / BCRC 10623 / CCUG 4943 / NCTC 11153) OX=411476 GN=BACOVA_02646 PE=1 SV=1 |
P31434 | 2.79e-27 | 123 | 574 | 159 | 646 | Alpha-xylosidase OS=Escherichia coli (strain K12) OX=83333 GN=yicI PE=1 SV=2 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000044 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.