logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003423_01099

You are here: Home > Sequence: MGYG000003423_01099

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species W3P20-009 sp900766825
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; W3P20-009; W3P20-009; W3P20-009 sp900766825
CAZyme ID MGYG000003423_01099
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
386 43917.78 8.5301
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003423 2824109 MAG Fiji Oceania
Gene Location Start: 69423;  End: 70583  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003423_01099.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 45 166 6.3e-23 0.6764705882352942

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04192 GT_2_like_e 3.46e-50 46 273 1 227
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
cd00761 Glyco_tranf_GTA_type 1.19e-22 46 205 1 155
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
pfam00535 Glycos_transf_2 1.69e-21 45 214 1 164
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd06423 CESA_like 7.52e-20 46 154 1 103
CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan.
COG1215 BcsA 5.49e-18 14 298 26 311
Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1,6-N-acetylglucosamine synthase [Cell motility].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ASB48106.1 2.33e-74 2 386 7 379
QEC70169.1 2.14e-71 13 363 19 355
AWH73144.1 7.91e-70 16 386 17 371
QEC55993.1 1.11e-69 19 306 20 307
AYD49108.1 1.21e-69 13 363 17 353

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q4L977 1.37e-07 43 157 42 150
4,4'-diaponeurosporenoate glycosyltransferase OS=Staphylococcus haemolyticus (strain JCSC1435) OX=279808 GN=crtQ PE=3 SV=1
Q8XAR5 8.80e-07 20 140 50 167
Poly-beta-1,6-N-acetyl-D-glucosamine synthase OS=Escherichia coli O157:H7 OX=83334 GN=pgaC PE=3 SV=1
P75905 3.63e-06 20 140 50 167
Poly-beta-1,6-N-acetyl-D-glucosamine synthase OS=Escherichia coli (strain K12) OX=83333 GN=pgaC PE=1 SV=1
D4GYG7 4.40e-06 37 186 1 144
Glycosyltransferase AglE OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=aglE PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000069 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      download full data without filtering help

start end
4 26
295 312
322 341
354 376