logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003646_00253

You are here: Home > Sequence: MGYG000003646_00253

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UBA1259 sp900771345
Lineage Bacteria; Firmicutes_A; Clostridia_A; Christensenellales; Borkfalkiaceae; UBA1259; UBA1259 sp900771345
CAZyme ID MGYG000003646_00253
CAZy Family CBM48
CAZyme Description 1,4-alpha-glucan branching enzyme GlgB
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
473 54840.94 5.7182
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003646 1267897 MAG Fiji Oceania
Gene Location Start: 29;  End: 1450  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.18

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 177 473 3.4e-148 0.9833887043189369
CBM48 31 112 5.9e-19 0.9078947368421053

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
PRK12313 PRK12313 0.0 16 473 12 474
1,4-alpha-glucan branching protein GlgB.
cd11322 AmyAc_Glg_BE 0.0 116 473 4 363
Alpha amylase catalytic domain found in the Glycogen branching enzyme (also called 1,4-alpha-glucan branching enzyme). The glycogen branching enzyme catalyzes the third step of glycogen biosynthesis by the cleavage of an alpha-(1,4)-glucosidic linkage and the formation a new alpha-(1,6)-branch by subsequent transfer of cleaved oligosaccharide. They are part of a group called branching enzymes which catalyze the formation of alpha-1,6 branch points in either glycogen or starch. This group includes proteins from bacteria, eukaryotes, and archaea. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
TIGR01515 branching_enzym 0.0 16 473 2 466
alpha-1,4-glucan:alpha-1,4-glucan 6-glycosyltransferase. This model describes the glycogen branching enzymes which are responsible for the transfer of chains of approx. 7 alpha(1--4)-linked glucosyl residues to other similar chains (in new alpha(1--6) linkages) in the biosynthesis of glycogen. This enzyme is a member of the broader amylase family of starch hydrolases which fold as (beta/alpha)8 barrels, the so-called TIM-barrel structure. All of the sequences comprising the seed of this model have been experimentally characterized. This model encompasses both bacterial and eukaryotic species. No archaea have this enzyme, although Aquifex aolicus does. Two species, Bacillus thuringiensis and Clostridium perfringens have two sequences each which are annotated as amylases. These annotations are aparrently in error. GP|18143720 from C. perfringens, for instance, contains the note "674 aa, similar to gp:A14658_1 amylase (1,4-alpha-glucan branching enzyme (EC 2.4.1.18) ) from Bacillus thuringiensis (648 aa); 51.1% identity in 632 aa overlap." A branching enzyme from Porphyromonas gingivales, OMNI|PG1793, appears to be more closely related to the eukaryotic species (across a deep phylogenetic split) and may represent an instance of lateral transfer from this species' host. A sequence from Arabidopsis thaliana, GP|9294564, scores just above trusted, but appears either to contain corrupt sequence or, more likely, to be a pseudogene as some of the conserved catalytic residues common to the alpha amylase family are not conserved here. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
PRK14705 PRK14705 0.0 16 473 608 1070
glycogen branching enzyme; Provisional
PRK12568 PRK12568 0.0 39 473 139 574
glycogen branching enzyme; Provisional

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CBL01646.1 5.44e-220 7 473 8 481
BCI60003.1 8.78e-219 8 473 5 477
AXB29737.1 1.00e-218 7 473 8 481
CBK95803.1 8.46e-217 14 473 11 478
CBL34144.1 1.20e-216 14 473 11 478

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5GR1_A 6.17e-167 16 473 134 620
Crystalstructure of branching enzyme Y500A/D501A mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose [Crocosphaera subtropica ATCC 51142],5GR6_A Crystal structure of branching enzyme Y500A/D501A double mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]
5GQZ_A 1.74e-166 16 473 134 620
Crystalstructure of branching enzyme Y500A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]
5GR0_A 1.74e-166 16 473 134 620
Crystalstructure of branching enzyme D501A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]
5GR2_A 3.48e-166 16 473 134 620
Crystalstructure of branching enzyme L541A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142],5GR4_A Crystal structure of branching enzyme L541A mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose [Crocosphaera subtropica ATCC 51142]
5GR3_A 3.48e-166 16 473 134 620
Crystalstructure of branching enzyme L541A/W655A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
B8CVY1 3.62e-188 17 473 12 474
1,4-alpha-glucan branching enzyme GlgB OS=Halothermothrix orenii (strain H 168 / OCM 544 / DSM 9562) OX=373903 GN=glgB PE=3 SV=1
Q1AZ86 4.03e-186 16 473 104 567
1,4-alpha-glucan branching enzyme GlgB OS=Rubrobacter xylanophilus (strain DSM 9941 / NBRC 16129 / PRD-1) OX=266117 GN=glgB PE=3 SV=1
Q21WG7 7.35e-179 16 473 7 468
1,4-alpha-glucan branching enzyme GlgB OS=Rhodoferax ferrireducens (strain ATCC BAA-621 / DSM 15236 / T118) OX=338969 GN=glgB PE=3 SV=1
O66936 2.46e-178 16 473 12 475
1,4-alpha-glucan branching enzyme GlgB OS=Aquifex aeolicus (strain VF5) OX=224324 GN=glgB PE=3 SV=1
Q8DLB8 3.89e-178 13 473 108 597
1,4-alpha-glucan branching enzyme GlgB OS=Thermosynechococcus vestitus (strain IAM M-273 / NIES-2133 / BP-1) OX=197221 GN=glgB PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000076 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003646_00253.