Species | Epilithonimonas bovis | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Bacteroidota; Bacteroidia; Flavobacteriales; Weeksellaceae; Epilithonimonas; Epilithonimonas bovis | |||||||||||
CAZyme ID | MGYG000003804_01220 | |||||||||||
CAZy Family | GH13 | |||||||||||
CAZyme Description | Cytoplasmic alpha-amylase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 28; End: 558 Strand: + |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
PRK09441 | PRK09441 | 1.94e-86 | 1 | 174 | 315 | 479 | cytoplasmic alpha-amylase; Reviewed |
cd11318 | AmyAc_bac_fung_AmyA | 1.35e-40 | 1 | 88 | 313 | 391 | Alpha amylase catalytic domain found in bacterial and fungal Alpha amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes bacterial and fungal proteins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
cd11314 | AmyAc_arch_bac_plant_AmyA | 1.18e-11 | 1 | 90 | 224 | 295 | Alpha amylase catalytic domain found in archaeal, bacterial, and plant Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes AmyA from bacteria, archaea, water fleas, and plants. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. |
pfam09154 | DUF1939 | 1.45e-08 | 119 | 173 | 2 | 56 | Domain of unknown function (DUF1939). Members of this family, which are predominantly found in Archaeal amylase, adopt a secondary structure consisting of an eight-stranded antiparallel beta-sheet containing a Greek key motif. Their exact function has not, as yet, been determined. |
PLN02361 | PLN02361 | 1.56e-05 | 1 | 71 | 273 | 341 | alpha-amylase |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QIY84894.1 | 9.49e-129 | 1 | 176 | 314 | 489 |
AZI41093.1 | 4.21e-112 | 1 | 176 | 314 | 489 |
AZI54322.1 | 1.44e-107 | 3 | 176 | 316 | 489 |
QOR74673.1 | 1.12e-87 | 3 | 176 | 316 | 489 |
AYN01324.1 | 7.34e-86 | 3 | 174 | 317 | 488 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6GXV_A | 4.42e-47 | 1 | 176 | 317 | 484 | Amylasein complex with acarbose [Alicyclobacillus sp.],6GXV_B Amylase in complex with acarbose [Alicyclobacillus sp.],6GYA_A Amylase in complex with branched ligand [Alicyclobacillus sp.],6GYA_B Amylase in complex with branched ligand [Alicyclobacillus sp.],6GYA_C Amylase in complex with branched ligand [Alicyclobacillus sp.],6GYA_D Amylase in complex with branched ligand [Alicyclobacillus sp.] |
1BPL_B | 3.67e-46 | 1 | 174 | 124 | 292 | Glycosyltransferase[Bacillus licheniformis] |
4UZU_A | 3.76e-46 | 1 | 174 | 314 | 479 | Three-dimensionalstructure of a variant `Termamyl-like' Geobacillus stearothermophilus alpha-amylase at 1.9 A resolution [Geobacillus stearothermophilus] |
1HVX_A | 3.88e-46 | 1 | 174 | 316 | 481 | BACILLUSSTEAROTHERMOPHILUS ALPHA-AMYLASE [Geobacillus stearothermophilus] |
6TOY_A | 4.79e-45 | 1 | 174 | 313 | 481 | Crystalstructure of Bacillus paralicheniformis wild-type alpha-amylase [Bacillus licheniformis],6TOZ_A Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with acarbose [Bacillus licheniformis],6TP0_A Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with maltose [Bacillus licheniformis],6TP1_A Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with maltotetraose [Bacillus licheniformis],6TP2_A Crystal structure of Bacillus paralicheniformis alpha-amylase in complex with beta-cyclodextrin [Bacillus licheniformis] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P26612 | 1.59e-60 | 5 | 176 | 321 | 492 | Cytoplasmic alpha-amylase OS=Escherichia coli (strain K12) OX=83333 GN=amyA PE=1 SV=3 |
P26613 | 5.09e-58 | 5 | 176 | 321 | 492 | Cytoplasmic alpha-amylase OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=amyA PE=3 SV=3 |
P06279 | 3.44e-45 | 1 | 174 | 350 | 515 | Alpha-amylase OS=Geobacillus stearothermophilus OX=1422 GN=amyS PE=1 SV=3 |
P06278 | 1.55e-43 | 1 | 174 | 342 | 510 | Alpha-amylase OS=Bacillus licheniformis OX=1402 GN=amyS PE=1 SV=1 |
P00692 | 1.64e-42 | 5 | 174 | 348 | 512 | Alpha-amylase OS=Bacillus amyloliquefaciens OX=1390 PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000048 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.