logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003891_00525

You are here: Home > Sequence: MGYG000003891_00525

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UBA11524 sp000437595
Lineage Bacteria; Firmicutes_A; Clostridia_A; Christensenellales; CAG-74; UBA11524; UBA11524 sp000437595
CAZyme ID MGYG000003891_00525
CAZy Family GT4
CAZyme Description Putative glycosyltransferase EpsF
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
366 MGYG000003891_12|CGC1 41569.16 8.817
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003891 3063528 MAG United States North America
Gene Location Start: 19491;  End: 20591  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003891_00525.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 188 327 3.2e-31 0.875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03812 GT4_CapH-like 3.76e-92 31 353 30 356
capsular polysaccharide biosynthesis glycosyltransferase CapH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. capH in Staphylococcus aureus has been shown to be required for the biosynthesis of the type 1 capsular polysaccharide (CP1).
cd03807 GT4_WbnK-like 2.28e-40 66 326 67 325
Shigella dysenteriae WbnK and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. WbnK in Shigella dysenteriae has been shown to be involved in the type 7 O-antigen biosynthesis.
cd03801 GT4_PimA-like 4.55e-40 2 357 1 365
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03811 GT4_GT28_WabH-like 1.42e-37 55 293 56 292
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
cd03808 GT4_CapM-like 1.46e-37 68 288 67 288
capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ATL90970.1 1.02e-70 1 357 10 364
AUG58592.1 1.44e-70 1 352 2 357
QIA43508.1 3.81e-70 1 357 8 362
ATP00768.1 4.04e-70 1 357 10 364
QKN24766.1 1.36e-67 13 358 7 354

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4XSO_A 5.18e-13 76 346 89 370
ChainA, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSO_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSP_A Chain A, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSP_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSR_A Chain A, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSR_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSU_A Chain A, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418],4XSU_B Chain B, Alr3699 protein [Nostoc sp. PCC 7120 = FACHB-418]
3OKA_A 1.62e-12 153 292 159 308
Crystalstructure of Corynebacterium glutamicum PimB' in complex with GDP-Man (triclinic crystal form) [Corynebacterium glutamicum],3OKA_B Crystal structure of Corynebacterium glutamicum PimB' in complex with GDP-Man (triclinic crystal form) [Corynebacterium glutamicum]
3OKC_A 1.71e-12 153 292 159 308
Crystalstructure of Corynebacterium glutamicum PimB' bound to GDP (orthorhombic crystal form) [Corynebacterium glutamicum],3OKP_A Crystal structure of Corynebacterium glutamicum PimB' bound to GDP-Man (orthorhombic crystal form) [Corynebacterium glutamicum]
5I45_A 1.02e-11 163 357 2 209
1.35Angstrom Crystal Structure of C-terminal Domain of Glycosyl Transferase Group 1 Family Protein (LpcC) from Francisella tularensis. [Francisella tularensis subsp. tularensis SCHU S4]
4RBN_A 4.20e-06 166 300 536 689
Thecrystal structure of Nitrosomonas europaea sucrose synthase: Insights into the evolutionary origin of sucrose metabolism in prokaryotes [Nitrosomonas europaea],4RBN_B The crystal structure of Nitrosomonas europaea sucrose synthase: Insights into the evolutionary origin of sucrose metabolism in prokaryotes [Nitrosomonas europaea],4RBN_C The crystal structure of Nitrosomonas europaea sucrose synthase: Insights into the evolutionary origin of sucrose metabolism in prokaryotes [Nitrosomonas europaea],4RBN_D The crystal structure of Nitrosomonas europaea sucrose synthase: Insights into the evolutionary origin of sucrose metabolism in prokaryotes [Nitrosomonas europaea]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P71055 4.06e-38 2 357 7 374
Putative glycosyltransferase EpsF OS=Bacillus subtilis (strain 168) OX=224308 GN=epsF PE=2 SV=1
Q9R9N2 4.49e-15 119 293 100 276
Lipopolysaccharide core biosynthesis mannosyltransferase LpsB OS=Rhizobium meliloti (strain 1021) OX=266834 GN=lpsB PE=3 SV=1
Q8NNK8 8.86e-12 153 292 159 308
GDP-mannose-dependent monoacylated alpha-(1-6)-phosphatidylinositol monomannoside mannosyltransferase OS=Corynebacterium glutamicum (strain ATCC 13032 / DSM 20300 / BCRC 11384 / JCM 1318 / LMG 3730 / NCIMB 10025) OX=196627 GN=pimB PE=1 SV=1
Q58459 3.12e-11 155 293 168 306
Uncharacterized glycosyltransferase MJ1059 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1059 PE=3 SV=1
Q04975 1.02e-10 192 293 401 502
Vi polysaccharide biosynthesis protein VipC/TviE OS=Salmonella typhi OX=90370 GN=vipC PE=4 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000055 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003891_00525.