logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004174_01143

You are here: Home > Sequence: MGYG000004174_01143

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes_A; Clostridia_A; Christensenellales; CAG-74; Firm-11;
CAZyme ID MGYG000004174_01143
CAZy Family GH13
CAZyme Description Neopullulanase 2
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
582 67583.32 6.0842
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004174 2366989 MAG United Kingdom Europe
Gene Location Start: 11924;  End: 13672  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004174_01143.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 174 466 4.4e-108 0.9966666666666667

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11338 AmyAc_CMD 1.24e-168 140 504 5 389
Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
PRK10785 PRK10785 1.54e-94 25 562 22 587
maltodextrin glucosidase; Provisional
cd11316 AmyAc_bac2_AmyA 1.42e-69 174 502 20 403
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
pfam00128 Alpha-amylase 1.14e-68 174 466 1 334
Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain.
cd11353 AmyAc_euk_bac_CMD_like 2.30e-68 140 504 5 366
Alpha amylase catalytic domain found in eukaryotic and bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is mainly bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AIQ63272.1 9.79e-128 6 575 3 570
BAS28813.1 9.84e-127 1 567 1 572
QDA26526.1 5.51e-126 6 544 3 546
QPK56080.1 5.51e-126 6 544 3 546
AHM64132.1 5.51e-126 6 544 3 546

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1BVZ_A 2.22e-125 6 580 3 580
Alpha-amylaseIi (tvaii) From Thermoactinomyces Vulgaris R-47 [Thermoactinomyces vulgaris],1BVZ_B Alpha-amylase Ii (tvaii) From Thermoactinomyces Vulgaris R-47 [Thermoactinomyces vulgaris],1JI2_A Improved X-ray Structure of Thermoactinomyces vulgaris R-47 alpha-Amylase 2 [Thermoactinomyces vulgaris],1JI2_B Improved X-ray Structure of Thermoactinomyces vulgaris R-47 alpha-Amylase 2 [Thermoactinomyces vulgaris],3A6O_A Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase 2/acarbose complex [Thermoactinomyces vulgaris],3A6O_B Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase 2/acarbose complex [Thermoactinomyces vulgaris]
1JF6_A 6.23e-125 6 580 3 580
ChainA, ALPHA AMYLASE II [Thermoactinomyces vulgaris],1JF6_B Chain B, ALPHA AMYLASE II [Thermoactinomyces vulgaris]
1WZM_A 6.23e-125 6 580 3 580
ChainA, Alpha-amylase II [Thermoactinomyces vulgaris],1WZM_B Chain B, Alpha-amylase II [Thermoactinomyces vulgaris]
1WZK_A 1.24e-124 6 580 3 580
ChainA, Alpha-amylase II [Thermoactinomyces vulgaris],1WZK_B Chain B, Alpha-amylase II [Thermoactinomyces vulgaris]
1JIB_A 1.24e-124 6 580 3 580
ChainA, NEOPULLULANASE [Thermoactinomyces vulgaris],1JIB_B Chain B, NEOPULLULANASE [Thermoactinomyces vulgaris],1JL8_A Chain A, ALPHA-AMYLASE II [Thermoactinomyces vulgaris],1JL8_B Chain B, ALPHA-AMYLASE II [Thermoactinomyces vulgaris],1VB9_A Chain A, alpha-amylase II [Thermoactinomyces vulgaris],1VB9_B Chain B, alpha-amylase II [Thermoactinomyces vulgaris],2D2O_A Chain A, Neopullulanase 2 [Thermoactinomyces vulgaris],2D2O_B Chain B, Neopullulanase 2 [Thermoactinomyces vulgaris]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q08751 1.21e-124 6 580 3 580
Neopullulanase 2 OS=Thermoactinomyces vulgaris OX=2026 GN=tvaII PE=1 SV=1
P38940 5.13e-121 7 563 4 565
Neopullulanase OS=Geobacillus stearothermophilus OX=1422 GN=nplT PE=1 SV=1
Q08341 8.76e-120 4 573 2 574
Cyclomaltodextrinase OS=Lysinibacillus sphaericus OX=1421 PE=1 SV=1
Q59226 1.03e-118 6 531 3 533
Cyclomaltodextrinase OS=Bacillus sp. OX=1409 GN=CDI5 PE=1 SV=1
P32818 2.05e-116 7 567 4 571
Maltogenic alpha-amylase OS=Bacillus acidopullulyticus OX=28030 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000039 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004174_01143.