logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004222_00052

You are here: Home > Sequence: MGYG000004222_00052

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-269 sp900556345
Lineage Bacteria; Firmicutes_A; Clostridia; TANB77; CAG-508; CAG-269; CAG-269 sp900556345
CAZyme ID MGYG000004222_00052
CAZy Family GT2
CAZyme Description 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
518 60879.53 5.5307
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004222 1526338 MAG United Kingdom Europe
Gene Location Start: 43309;  End: 44865  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004222_00052.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 7 156 3e-38 0.8823529411764706

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
pfam00300 His_Phos_1 6.53e-50 340 518 1 183
Histidine phosphatase superfamily (branch 1). The histidine phosphatase superfamily is so named because catalysis centers on a conserved His residue that is transiently phosphorylated during the catalytic cycle. Other conserved residues contribute to a 'phosphate pocket' and interact with the phospho group of substrate before, during and after its transfer to the His residue. Structure and sequence analyses show that different families contribute different additional residues to the 'phosphate pocket' and, more surprisingly, differ in the position, in sequence and in three dimensions, of a catalytically essential acidic residue. The superfamily may be divided into two main branches. The larger branch 1 contains a wide variety of catalytic functions, the best known being fructose 2,6-bisphosphatase (found in a bifunctional protein with 2-phosphofructokinase) and cofactor-dependent phosphoglycerate mutase. The latter is an unusual example of a mutase activity in the superfamily: the vast majority of members appear to be phosphatases. The bacterial regulatory protein phosphatase SixA is also in branch 1 and has a minimal, and possible ancestral-like structure, lacking the large domain insertions that contribute to binding of small molecules in branch 1 members.
COG0406 PhoE 1.97e-43 338 518 3 189
Broad specificity phosphatase PhoE [Carbohydrate transport and metabolism].
pfam00535 Glycos_transf_2 1.58e-36 7 127 1 122
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
PRK10073 PRK10073 2.71e-35 5 118 7 120
putative glycosyl transferase; Provisional
cd00761 Glyco_tranf_GTA_type 2.56e-34 8 158 1 153
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AGK95887.1 3.00e-69 6 334 4 324
QJX64180.1 2.97e-63 6 286 5 282
QUF73734.1 1.65e-62 3 284 5 273
AIU02423.1 1.65e-62 3 284 5 273
QES75627.1 1.65e-62 3 284 5 273

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5HEA_A 9.15e-48 4 221 5 222
CgTstructure in hexamer [Streptococcus parasanguinis FW213],5HEA_B CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEA_C CgT structure in hexamer [Streptococcus parasanguinis FW213],5HEC_A CgT structure in dimer [Streptococcus parasanguinis FW213],5HEC_B CgT structure in dimer [Streptococcus parasanguinis FW213]
3BCV_A 7.25e-25 6 214 7 224
Crystalstructure of a putative glycosyltransferase from Bacteroides fragilis [Bacteroides fragilis NCTC 9343],3BCV_B Crystal structure of a putative glycosyltransferase from Bacteroides fragilis [Bacteroides fragilis NCTC 9343]
2Z87_A 1.38e-14 5 96 375 466
Crystalstructure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli],2Z87_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli]
2Z86_A 1.39e-14 5 96 376 467
Crystalstructure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_C Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_D Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli]
6P61_A 1.48e-14 2 136 11 148
Structureof a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_B Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_C Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_D Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
A0A0H2URH7 7.28e-39 3 221 4 222
Glycosyltransferase GlyA OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=glyA PE=3 SV=1
A0A0H2UR96 1.86e-33 4 226 3 226
Glycosyltransferase GlyG OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=glyG PE=1 SV=1
P71059 1.77e-29 5 228 4 225
Uncharacterized glycosyltransferase EpsJ OS=Bacillus subtilis (strain 168) OX=224308 GN=epsJ PE=2 SV=1
P71057 7.60e-28 1 196 1 193
Putative glycosyltransferase EpsH OS=Bacillus subtilis (strain 168) OX=224308 GN=epsH PE=2 SV=1
P11290 2.77e-23 6 221 8 222
Uncharacterized glycosyltransferase YibD OS=Escherichia coli (strain K12) OX=83333 GN=yibD PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000036 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004222_00052.