logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004255_01302

You are here: Home > Sequence: MGYG000004255_01302

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Amulumruptor sp900547825
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Muribaculaceae; Amulumruptor; Amulumruptor sp900547825
CAZyme ID MGYG000004255_01302
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
329 37854.44 8.874
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004255 2427013 MAG China Asia
Gene Location Start: 24412;  End: 25401  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004255_01302.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 12 143 2.4e-16 0.7235294117647059

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04196 GT_2_like_d 6.01e-34 13 223 2 204
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
cd00761 Glyco_tranf_GTA_type 2.40e-18 13 173 1 153
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
pfam00535 Glycos_transf_2 1.63e-13 12 127 1 107
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd06433 GT_2_WfgS_like 2.31e-13 13 223 2 195
WfgS and WfeV are involved in O-antigen biosynthesis. Escherichia coli WfgS and Shigella dysenteriae WfeV are glycosyltransferase 2 family enzymes involved in O-antigen biosynthesis. GT-2 enzymes have GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
COG0463 WcaA 6.18e-13 7 327 1 291
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AII63374.1 2.92e-70 5 325 3 304
ALO47942.1 4.18e-61 34 319 2 279
QEW36669.1 5.44e-60 6 227 8 223
QUE30982.1 3.62e-56 4 250 14 257
QRM71513.1 4.64e-56 4 326 13 301

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P64864 2.23e-36 13 222 3 201
Uncharacterized protein Mb1547 OS=Mycobacterium bovis (strain ATCC BAA-935 / AF2122/97) OX=233413 GN=BQ2027_MB1547 PE=4 SV=1
P9WLV4 2.23e-36 13 222 3 201
Uncharacterized protein MT1570 OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT1570 PE=4 SV=1
P9WLV5 2.23e-36 13 222 3 201
Uncharacterized protein Rv1520 OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv1520 PE=1 SV=1
O32268 1.48e-11 8 238 5 219
Putative teichuronic acid biosynthesis glycosyltransferase TuaG OS=Bacillus subtilis (strain 168) OX=224308 GN=tuaG PE=2 SV=1
P71054 3.98e-10 9 143 5 131
Putative glycosyltransferase EpsE OS=Bacillus subtilis (strain 168) OX=224308 GN=epsE PE=2 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000051 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004255_01302.